Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал «Медицина неотложных состояний» Том 18, №3, 2022

Вернуться к номеру

Клінічні та гістопатофізіологічні особливості дифузного альвеолярного ураження (пневмонії), обумовленого SARS-CoV-2, у хворих, які потребують респіраторної підтримки

Авторы: Ходош Е.М., Івахно І.В.
Харківська медична академія післядипломної освіти, м. Харків, Україна
КНП «Міська клінічна лікарня № 13» ХМР, КНП «Міська клінічна багатопрофільна лікарня № 17» ХМР, м. Харків, Україна

Рубрики: Медицина неотложных состояний

Разделы: Справочник специалиста

Версия для печати


Резюме

Гострий респіраторний дистрес-синдром (ГРДС) та дихальна недостатність є основними загрозливими станами у хворих із COVID-19. Основною причиною є насамперед порушення перфузії легень. Анатомічні передумови для позитивного тиску у кінці видиху (ПТКВ) (некардіогенний набряк легень, ателектаз і, отже, можливість рекрутування) відсутні. Неінвазивна вентиляція легень може усунути гіпоксемію і знизити інспіраторні зусилля. Інакше слід розглянути можливість використання механічної вентиляції для запобігання самоіндукованому пошкодженню легень. Ці характеристики пов’язані з помітним порушенням механіки дихання, підвищеним тиском вуглекислого газу артеріальної крові. Провідною характеристикою прогресування COVID-19 є поступовий перехід від набряку або ателектазу до менш оборотних структурних змін легень, а саме до фіброзу. Порушується механіка дихання, підвищується тиск вуглекислого газу в артеріальній крові, знижується здатність дихальної мускулатури та відсутня реакція на ПТКВ у положенні на животі.

Acute respiratory distress syndrome (ARDS) and respiratory failure are the main problems in patients with COVID-19. The main reason is primarily a violation of lung perfusion. Anatomical prerequisites for the work of PЕЕР (non-cardiogenic pulmonary edema, atelectasis and, consequently, the possibility of recruitment) are absent. Non-invasive lung ventilation can eliminate hypoxemia and reduce inspiratory effort. Otherwise, the use of mechanical ventilation to prevent self-induced lung injury should be considered. These characteristics are associated with a marked violation of the mechanics of respiration, high blood pressure of arterial carbon dioxide. The leading characteristic of COVID-19 progression is the gradual transition from edema or atelectasis to less reversible structural changes in the lungs, namely fibrosis. The mechanics of respiration are disturbed, the pressure of carbon dioxide in the arterial blood increases, the ability of the respiratory muscles decreases and there is no reaction to PЕEP in the abdominal position.


Ключевые слова

дифузне альвеолярне ураження; COVID-19; респіраторна підтримка; сурфактант; гострий респіраторний дистрес-синдром; неінвазивна вентиляція легень; огляд

diffuse alveolar lesions; COVID-19; respiratory support; surfactant; acute respiratory distress syndrome; non-invasive lung ventilation; review


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

  1. Пальман А.Д., Андреев Д.А., Сучкова С.А. Немая гипоксемия у пациента с тяжелой SARS-CoV-2-пневмонией. Сеченовский вестник. 2020. Т. 11. № 2. Спец. выпуск: COVID-19.
  2. Ходош Э.М., Грифф С.Л., Ивахно И.В. Клинико-лучевые и морфологические особенности COVID-19-ассоциированной пневмонии в динамике заболевания. Актуальные проблемы медицины. 2020. Т. 43. № 4. С. 473-489. DOI: 10.18413/2687-0940-2020-43-4-473-489.
  3. Глумчер Ф.С. Острый респираторный дистресс-синдром: определение, патогенез, терапия. Мистецтво лікування. 2016. С. 22-31.
  4. Наказ МОЗ України від 06 квітня 2021 року № 638 «Про внесення змін до протоколу «Надання медичної допомоги для лікування коронавірусної хвороби (COVID-19)».
  5. Marie Chedid, Rami Waked, Elie Haddad Nabil, Chetata Gebrael, Saliba Jacques Choucair Antibiotics in treatment of COVID-19 complications: a review of frequency, indications, and efficacy. Journal of Infection and Public Health. 2021 May. 14. Iss. 5. 570-576.
  6. Hu B., Guo H., Zhou P., Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2020. 6. 1-14. PMID: 33024307.
  7. Болевич С.В., Болевич С.С. Комплексный механизм развития COVID-19. Сеченовский вестник. 2020. Т. 11. № 2. С. 27-41.
  8. Farkas J. Perhaps the best non-invasive COVID-19 support is CPAP. EMCrit (emcrit.org) - critical care resourcehttps://emcrit.org/pulmcrit/cpap-covid/
  9. Глыбочко П.В., Фомин В.В., Авдеев С.Н. и др. Клиническая характеристика 1007 больных тяжелой SARS-CoV-2 пневмонией, нуждавшихся в респираторной поддержке. Клиническая фармакология и терапия. 2020. № 2. С. 38-52. DOI: 10.32756/0869-5490-2020-2-21-29.
  10. Интенсивная терапия в пульмонологии. Под ред. С.Н. Авдеева. Т. 1. М.: Атмосфера, 2014. 304 c.
  11. Чучалин А.Г. Респираторная медицина. Т. 1. 2017. 1303 с.
  12. Tzotzos S.J., Fischer B., Fischer H., Zeitlinger M. ARDS incidence and outcomes in hospitalized COVID-19 patients: a global literature review. Crit. Care 2020. 24. 516. DOI: 10.1186/s13054-020-03240-7. PMID: 32825837.
  13. Petrilli S.M., Jones S.A., Ian J. and others. Factors associated with hospitalization and critical illness among 5,279 people with coronavirus disease in 2019 in New York: a prospective cohort study. BMJ. 2020. 369. m1966. Doi: 10.1136/bmj.m1966. PMID: 32444366.
  14. Starr T.N., Greeny A.J., Addetia A. and others. Prospective mapping of viral mutations escaping antibodies used to treat COVID-19. Science. 2021. eabf9302. DOI: 10.1126/science.abf9302. PMID: 33495308.
  15. Wang K., Zhang I., Wu L. et al. Structural and functional basis of SARS-CoV-2 penetration using human ACE2. Cell. 2020. 181. 894-904.e9. DOI: 10.1016/j.cell.2020.03.045. PMID: 32275855.
  16. Yuki K., Fujiogi M., Kutsogiannaki S. Pathophysiology of COVID-19: An Overview. Clin. Immunol. 2020. 215. 108427. DOI: 10.1016/j.clim.2020.108427. PMID: 32325252.
  17. Amy H. Attaway, Rachel G. Scheraga, Adarsh Bhimraj, Michelle Biehl, Umur Hatipoğlu. Severe COVID-19 pneumonia: pathogenesis and clinical management. BMJ. 2021. 372. doi: https://doi.org/10.1136/bmj.n436 (Published 10 March 2021). Cite this as: BMJ. 2021. 372. n436.
  18. WHO Director-General’s opening remarks at the media briefing on COVID-19, 11 March 2020. URL: https://www.who.int dg/speeches/detail/who-director-general-s-opening-remarksat-the-media-briefing-on-covid-19---11-march-2020 (accessed 15.06.2020).
  19. Pandharipanda P.P., Girard T.D., Jackson J.C. et al. BRAIN-ICU Study Researchers. Long-term cognitive impairment after severe illness. N. Engl. J. Med. 2013. 369. 1306-16. DOI: 10.1056/NEJMoa1301372. PMID: 24088092.
  20. Greenhalg T., Knight M., A’Court C., Buxton M., Hussein L. Management of post-acute COVID-19 in primary health care. BMJ. 2020. 370. m3026. Doi: 10.1136/bmj.m3026. PMID: 32784198.
  21. Chu D.K., Kim L.H.Y., Young P.J. et al. Mortality and morbidity in acute adults receiving liberal or conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018. 391. 1693-705. DOI: 10.1016/S0140-6736(18) 30479-3. PMID: 29726345. 
  22. Semenyuk R.A.C., Chu D.K., Kim L.H. et al. Oxygen therapy for patients with acute diseases: a guide to clinical practice. BMJ. 2018. 363. k4169. Doi: 10.1136/bmj.k4169. PMID: 30355567.
  23. Barro L., Asfar P., Mouni F. et al. LOCO2 Explorers and the REVA Research Network. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N. Engl. J. Med. 2020. 382. 999-1008. DOI: 10.1056/NEJMoa1916431. PMID: 32160661. 
  24. Brower R.G., Mattey M.A., Morris A., Schoenfeld D., Thompson B.T., Wheeler A., Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes compared to traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N. Engl. J. Med. 2000. 342. 1301-8. DOI: 10.1056/NEJM200005043421801. PMID: 10793162. 
  25. Slutskiy A.S., Ranieri V.M. Damage to the lungs caused by a ventilator. N. Engl. J. Med. 2013. 369. 2126-36. DOI: 10.1056/NEJMra1208707. PMID: 24283226.
  26. Mascheroni D., Kolobov T., Fumagalli R., Moretti M.P., Chen V., Buckhold D. Acute respiratory failure after pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988. 15. 8-14. DOI: 10.1007/BF00255628. PMID: 3230208. 
  27. Carteaux G., Millan-Guilarte T., De Prost N. et al. Failure of non-invasive ventilation in acute hypoxemic respiratory failure de novo: the role of tidal volume. Crit. Care Med. 2016. 44. 282-90. DOI: 10.1097/CCM.0000000000001379. PMID: 26584191. 
  28. Brochard L., Slutsky A., Pesenti A. Mechanical ventilation of the lungs to minimize the progression of lung damage in acute respiratory failure. Am. J. Respir. Crit. Care Med. 2017. 195. 438-42. Doi: 10.1164/rccm.201605-1081CP. PMID: 27626833. 
  29. Amato M.B.P., Mead M.O., Slutskiy A.S. et al. Motive pressure and survival in acute respiratory distress syndrome. N. Engl. J. Med. 2015. 372. 747-55. DOI: 10.1056/NEJMsa1410639. PMID: 25693014. 
  30. Chatburn R.L., van der Staay M. Control pressure or tidal pressure: what does the name mean. Respir. Care. 2019. 64. 1176-9. Doi: 10.4187/respcare.07233. PMID: 31467160. 
  31. Brower R.G., Lanken P.N., McIntyre N. et al. ARDS Clinical Trials Network of the National Heart, Lung, and Blood Institute. Higher and lower positive end-expiratory pressure in patients with acute respiratory distress syndrome. N. Engl. J. Med. 2004. 351. 327-36. DOI: 10.1056/NEJMoa032193. PMID: 15269312. 
  32. Mead M.O., Chef D.J., Guyatt G.H. et al. Researchers study open ventilation. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure in acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008. 299. 637-45. DOI: 10.1001/jama.299.6.637. PMID: 18270352. 
  33. Cavalcanti A.B., Suzumura E.A., Laranjeira .LN. et al.  Alveolar Recruitment Team for Acute Respiratory Distress Syndrome (ART) Investigators. Effect of lung recruitment and titrated positive end expiratory pressure (PEEP) versus low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017. 318. 1335-45. DOI: 10.1001/jama.2017.14171. PMID: 28973363. 
  34. Chen L., Del Sorbo L., Grieco D.L. other. Lung recruitment potential is assessed by the ratio of recruitment to inflation in acute respiratory. distress syndrome. Clinical trial. Am. J. Respir. Crit. Care Med. 2020. 201. 178-87. DOI: 10.1164/rccm.201902-0334OC. PMID: 31577153. 
  35. Pan S., Chen L., Lu S. et al. Lung recruitment in covid-19-associated acute respiratory distress syndrome: a single-center observational study. Am. J. Respir. Crit. Care Med. 2020. 201. 1294-7. DOI: 10.1164/rccm.202003-0527LE. PMID: 32200645. 
  36. Grasso S., Mirabella L., Murgolo F. et al. Effects of positive end-expiratory pressure in severe acute respiratory syndrome “high compliance”, acute respiratory distress syndrome caused by coronavirus 2. Crit. Care Med. 2020. 48. e1332-6. DOI: 10.1097/CCM.0000000000004640. PMID: 32932346. 
  37. Carbing D.S., Panigada M., Bottino N. et al. Shunt changes, ventilation/perfusion and aeration mismatches with PEEP in patients with ARDS: a prospective single-arm interventional study. Crit. Care. 2020. 24. 111. Doi: 10.1186/s13054-020-2834-6. PMID: 32293506. 
  38. Guerin S., Reignier J., Richard J.C. et al. PROSEVA Study group. Prone prone position in severe acute respiratory distress syndrome. N. Engl. J. Med. 2013. 368. 2159-68. DOI: 10.1056/NEJMoa1214103. PMID: 23688302. 
  39. Ho A.T.N., Patolia S., Guervilly C. Neuromuscular blockade in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. J. Intensive Care. 2020. 8. 12. DOI: 10.1186/s40560-020-0431-z. PMID: 32015880. 
  40. Gattinoni L., Coppola S., Cressoni M. Covid-19 does not cause the “typical” acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2020. 201. 1299-300. 
  41. Fan E., Beitler Jr., Brochard L. et al. COVID-19 Associated Acute Respiratory Distress Syndrome: Is a Different Approach Justified? Lancet Respir. Honey. 2020. 8. 816-21. DOI: 10.1016/S2213-2600(20)30304-0. PMID: 32645311. 
  42. Tobin M.J., Laghi F., Jubran A. P-SILI is no excuse for intubation of COVID-19 patients. Ann. Intensive Care. 2020. 10. 105. DOI: 10.1186/s13613-020-00724-1. PMID: 32748116. 
  43. Schmidt M., Hajage D., Lebreton G. et al. Groupe de Recherche Clinique en REanimation et Soinstensifs du Patient en Islands Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris-Sorbonne ECMO-COVID Researchers. Extracorporeal membrane oxygenation in severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir. Honey. 2020. 8. 1121-31. DOI: 10.1016/S2213-2600(20)30328-3. PMID: 32798468. 
  44. Ferrando S., Suarez-Zipmann F., Mellado-Artigas R. et al. COVID-19 Spanish Intensive Care Network. The clinical features, ventilation, and outcome of COVID-19-associated ARDS are similar to those of other causes of ARDS. Intensive Care Med. 2020. 46. 2200-11. DOI: 10.1007/s00134-020-06192-2. PMID: 32728965.

Вернуться к номеру