Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



СІМЕЙНІ ЛІКАРІ ТА ТЕРАПЕВТИ
день перший
день другий

НЕВРОЛОГИ, НЕЙРОХІРУРГИ, ЛІКАРІ ЗАГАЛЬНОЇ ПРАКТИКИ, СІМЕЙНІ ЛІКАРІ

КАРДІОЛОГИ, СІМЕЙНІ ЛІКАРІ, РЕВМАТОЛОГИ, НЕВРОЛОГИ, ЕНДОКРИНОЛОГИ

СТОМАТОЛОГИ

ІНФЕКЦІОНІСТИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, ГАСТРОЕНТЕРОЛОГИ, ГЕПАТОЛОГИ
день перший
день другий

ТРАВМАТОЛОГИ

ОНКОЛОГИ, (ОНКО-ГЕМАТОЛОГИ, ХІМІОТЕРАПЕВТИ, МАМОЛОГИ, ОНКО-ХІРУРГИ)

ЕНДОКРИНОЛОГИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, КАРДІОЛОГИ ТА ІНШІ СПЕЦІАЛІСТИ

ПЕДІАТРИ ТА СІМЕЙНІ ЛІКАРІ

АНЕСТЕЗІОЛОГИ, ХІРУРГИ

International neurological journal Том 18, №4, 2022

Back to issue

Concept of encephalopathy immunopathogenesis in children with autistism spectrum disorders associated with genetic deficiency of folate cycle and potential therapeutic approaches

Authors: Мальцев Д.В., Натрус Л.В.
Національний медичний університет імені О.О. Богомольця, м. Київ, Україна

Categories: Neurology

Sections: Specialist manual

print version


Summary

Аналітичний огляд підсумовує результати власних досліджень у поєднанні із прогресивними поглядами сучасних наукових шкіл щодо актуальної проблеми у світі — діагностики і лікування дітей із розладами спектра аутизму. Отримані дані дозволили сформулювати наукову концепцію імунопатогенезу енцефалопатії у дітей, яка описує найбільш ймовірний сценарій патологічних подій, починаючи з появи патогенних поліморфних замін нуклеотидів у геномі плода і закінчуючи розвитком клінічних симптомів нейропсихіатричних порушень у дитини. Висунення такої концепції відкриває шлях до розробки алгоритму лікування дітей з розладами спектра аутизму, який раніше не був доступним.

The analytical review summarizes the results of our own researches in combination with the progressive views of modern scientific schools on the current problem in the world — the diagnosis and treatment of children with autism spectrum disorders. The obtained data allowed to formulate a scientific concept of encephalopathy immunopathogenesis in children, which describes the most likely scenario of pathological events, starting with the appearance of pathogenic polymorphic nucleotide substitutions in the fetal genome and ending with the development of clinical symptoms of neuropsychiatric disorders in a child. Advancing such a concept paves the way for the development of an algorithm for the treatment of children with autism spectrum disorders, which was not previously available.


Keywords

фолатний цикл, гіпергомоцистеїнемія, поліморфізми, імунодефіцит, енцефалопатія, нейрозапалення, імунотерапія

folate cycle; hyperhomocysteinemia; polymorphisms; immunodeficiency; encephalopathy; neuroinflammation; immunotherapy


For the full article you need to subscribe to the magazine.


Bibliography

1. Мальцев Д.В. Ефективність ритуксимабу при розладах спектра аутизму, асоційованих із генетичним дефіцитом фолатного циклу, з ознаками антинейронального автоімунітету. Міжнародний неврологічний журнал. 2021. Т. 17(5). С. 10-17.
2. Мальцев Д.В. Нейрорадіологічні ознаки енцефалопатії у дітей з розладами спектра аутизму, асоційованими з генетичним дефіцитом фолатного циклу. Український неврологічний журнал. 2021. Т. 3. С. 16-30.
3. Мальцев Д.В. Оцінка маркерів запалення та нейронального пошкодження у пацієнтів з розладами спектра аутизму, асоційованими з генетичним дефіцитом фолатного циклу. Імунологія та алергологія: наука і практика. 2021. Т. 3. С. 31-39.
4. Мальцев Д.В. Результати вивчення мікробного спектра у дітей з розладами спектра аутизму, асоційованими з генетичним дефіцитом фолатного циклу. Чоловіче здоров’я. Гендерна медицина. 2021. Т. 2. С. 26-39.
5. Мальцев Д.В. Результати вивчення показників біохімічного профілю у дітей з розладами спектра аутизму, асоційованими з генетичним дефіцитом фолатного циклу. Імунологія та алергологія: наука і практика. 2021. Т. 1–2. С. 19-28.
6. Мальцев Д.В. Результати оцінки імунного статусу у дітей з розладами спектра аутизму: імунодефіцит, асоційований з генетичним дефіцитом фолатного циклу. Імунологія та алергологія: наука і практика. 2021. Т. 4. P. 5-23.
7. Мальцев Д.В. Результати пошуку лабораторних ознак автоімунних реакцій до мозкових та позамозкових автоантигенів у дітей з розладами спектра аутизму, асоційованими з генетичним дефіцитом фолатного циклу. Мedical science of Ukraine. 2021. Т. 17(3). С. 22-37.
8. Мальцев Д.В. Результати ретроспективного аналізу застосування нормального внутрішньовенного імуноглобуліну людини у високій дозі для лікування імунозалежної енцефалопатії з клінічною картиною розладів аутистичного спектра в дітей з генетичним дефіцитом фолатного циклу. Міжнародний неврологічний журнал. 2021. Т. 17(8). С. 31-43. 
9. Asogwa K., Buabeng K., Kaur A. Psychosis in a 15-Year-Old Female with Herpes Simplex Encephalitis in a Background of Mannose-Binding Lecithin Deficiency. Case Rep. Psychiatry. 2017. Vol. 2017. P. 1429847.
10. Aydin S.Z., Atagunduz P., Inanc N. et al. Mannose binding lectin levels in spondyloarthropathies. J. Rheumatol. 2007. Vol. 34(10). P. 2075-2077.
11. Azhari A., Azizan F., Esposito G. A systematic review of gut-immune-brain mechanisms in Autism Spectrum Disorder. Dev. Psychobiol. 2019. Vol. 61(5). P. 752-771. doi: 10.1002/dev.21803.
12. Badiga S., Johanning G.L., Macaluso M. et al. A lower degree of PBMC L1 methylation in women with lower folate status may explain the MTHFR C677T polymorphism associated higher risk of CIN in the US post folic acid fortification era. PLoS One. 2014. Vol. 9(10). e110093.
13. Bagheri-Hosseinabadi Z., Imani D., Yousefi H., Abbasifard M. MTHFR gene polymorphisms and susceptibility to rheumatoid arthritis: a meta-analysis based on 16 studies. Clin. Rheumatol. 2020. Vol. 39(8). P. 2267-2279.
14. Baj J., Sitarz E., Forma A. et al. Alterations in the Nervous System and Gut Microbiota after beta-Hemolytic Streptococcus Group A Infection-Characteristics and Diagnostic Criteria of PANDAS Re-cognition. Int. J. Mol. Sci. 2020. Vol. 21(4). P. 1476. doi: 10.3390/ijms21041476.
15. Belardo A., Gevi F., Zolla L. et al. The concomitant lower concentrations of vitamins B6, B9 and B12 may cause methylation deficiency in autistic children. J. Nutr. Biochem. 2019. Vol. 70. P. 38-46.
16. Binstock T. Intra-monocyte pathogens delineate autism subgroups. Med. Hypotheses. 2001. Vol. 56(4). P. 523-531.
17. Birbian N., Singh J., Jindal S.K. et al. Association of the wild-type A/A genotype of MBL2 codon 54 with asthma in a North Indian population. Dis. Markers. 2012. Vol. 32(5). Р. 301-308.
18. Borges M.C., Hartwig F.P., Oliveira I.O., Horta B.L. Is there a causal role for homocysteine concentration in blood pressure? A Mendelian randomization study. Am. J. Clin. Nutr. 2016. Vol. 103(1). P. 39-49.
19. Bouboulis D.A., Mast P.A. Infection-Induced Autoimmune Encephalopathy: Treatment with Intravenous Immune Globulin Therapy. A Report of Six Patients. Int. J. Neurol. Res. 2016. Vol. 2. P. 256-258.
20. Boughrara W., Aberkane M., Fodil M. et al. Impact of –MTHFR rs1801133, MTHFR rs1801131 and ABCB1 rs1045642 polymorphisms with increased susceptibility of rheumatoid arthritis in the West Algerian population: A case-control study. Acta Reumatol. Port. 2015. Vol. 40(4). P. 363-371.
21. Brimberg L., Sadiq A., Gregersen P.K., Diamond B. Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder. Mol. Psychiatry. 2013. Vol. 18(11). P. 1171-1177.
22. Cabanlit M., Wills S., Goines P. et al. Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann. N. Y. Acad. Sci. 2007. Vol. 107. P. 92-103. 
23. Careaga M., Rogers S., Hansen R.L. et al. Immune endophenotypes in children with autism spectrum disorder. Biol. Psychiatry. 2017. Vol. 81. 434-441.
24. Carlus S.J., Abdallah A.M., Bhaskar L.V. et al. The MTHFR C677T polymorphism is associated with mitral valve rheumatic heart disease. Eur. Rev. Med. Pharmacol. Sci. 2016. Vol. 20(1). Р. 109-114.
25. Chen F., Wen T., Lv Q., Liu F. Associations between Folate Metabolism Enzyme Polymorphisms and Lung Cancer: A Meta-Analysis. Nutr. Cancer. 2020. Vol. 72(7). P. 1211-1218.
26. Chen H., Yang X., Lu M. et al. Methylenetetrahydrofolate reductase gene polymorphisms and recurrent pregnancy loss in China: a systematic review and meta-analysis. Arch. Gynecol. Obstet. 2016. Vol. 293(2). P. 283-290.
27. Chen L., Shi X.J., Liu H. et al. Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry. 2021. Vol. 11(1). P. 15.
28. Chen N., Zhang X., Zheng K. et al. Increased risk of group B Streptococcus causing meningitis in infants with mannose-binding lectin deficiency. Clin. Microbiol. Infect. 2019. Vol. 25(3). 384.e1-384.e3.
29. Christiansen O.B., Kilpatrick D.C., Souter V. et al. Mannan-binding lectin deficiency is associated with unexplained recurrent miscarriage. Scand. J. Immunol. 1999. Vol. 49(2). P. 193-196.
30. Crawley J.N., Heyer W.D., LaSalle J.M. Autism and Cancer Share Risk Genes, Pathways, and Drug Targets. Trends Genet. 2016. Vol. 32(3). P. 139-146.
31. Dimitroulas T., Sandoo A., Hodson J. et al. Associations between asymmetric dimethylarginine, homocysteine, and the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism (rs1801133) in rheumatoid arthritis. Scand. J. Rheumatol. 2016. Vol. 45(4). P. 267-273.
32. El-Hadidy M.A., Abdeen H.M., Abd El-Aziz S.M., Al-Harrass M. MTHFR gene polymorphism and age of onset of schizophrenia and bipolar disorder. Biomed. Res. Int. 2014. Vol. 2014. P. 318483. 
33. Foldager L., Köhler O., Steffensen R. et al. Bipolar and panic disorders may be associated with hereditary defects in the innate immune system. J. Affect Disord. 2014. Vol. 164. P. 148-154.
34. Frustaci A., Neri M., Cesario A. et al. Oxidative stress-rela-ted biomarkers in autism: systematic review and meta-analyses. Free Radic. Biol. Med. 2012. Vol. 52(10). P. 2128-2141.
35. Frye R.E. A Personalized Multidisciplinary Approach to Evaluating and Treating Autism Spectrum Disorder. J. Pers. Med. 2022. Vol. 12(3). P. 464.
36. Frye R.E., Sequeira J.M., Quadros E.V. et al. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol. Psychiatry. 2013. Vol. 18(3). P. 369-381.
37. Furlano R.I., Anthony A., Day R. et al. Colonic CD8 and gamma delta T-cell infiltration with epithelial damage in children with autism. J. Pediatr. 2001. Vol. 138(3). P. 366-372.
38. Ghaziuddin M., Al-Khouri I., Ghоaziuddin N. Autistic symptoms following herpes encephalitis. Eur. Child. Adolesc. Psychiatry. 2002. Vol. 11(3). P. 142-146.
39. Glesse N., Monticielo O.A., Mattevi V.S. et al. Association of mannose-binding lectin 2 gene polymorphic variants with susceptibility and clinical progression in systemic lupus erythematosus. Clin. Exp. Rheumatol. 2011. Vol. 29(6). P. 983-990.
40. González-Toro M.C., Jadraque-Rodríguez R., Sempere-Pérez Á. et al. Anti-NMDA receptor encephalitis: two paediatric cases. Rev. Neurol. 2013. Vol. 57(11). P. 504-508.
41. Guo B.Q., Li H.B., Ding S.B. et al. Blood homocysteine levels in children with autism spectrum disorder: An updated systematic review and meta-analysis. Psychiatry Res. 2020. Vol. 291. P. 113283.
42. Harberts E., Yao K., Wohler J.E. et al. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc. Natl. Acad. Sci. USA. 2011. Vol. 108(33). P. 13734-9.
43. Hardan A.Y., Fung L.K., Frazier T. et al. A proton spectro-scopy study of white matter in children with autism. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016. Vol. 66. P. 48-53. 
44. Heuer L., Ashwood P., Schauer J. et al. Reduced Levels of Immunoglobulin in Children With Autism Correlates With Behavioral Symptoms. Autism. Res. 2008. Vol. 1(5). P. 275-283.
45. Horiuchi F., Yoshino Y., Kumon H. et al. Identification of aberrant innate and adaptive immunity based on changes in global gene expression in the blood of adults with autism spectrum disorder. J. Neuroinflammation. 2021. Vol. 18(1). P. 102. 
46. Hughes H.K., Ashwood P. Anti-Candida albicans IgG Antibodies in Children With Autism Spectrum Disorders. Front. Psychiatry. 2018. Vol. 26(9). P. 627. doi: 10.3389/fpsyt.2018.00627.
47. Hughes H.K., Ko E.M., Rose D., Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci. 2018. Vol. 12. P. 405. 
48. Jin Z., Ji Z., Hu J. Mannose-binding lectin gene site mutations and the susceptibility of rheumatic heart disease. Zhonghua Yi Xue Za Zhi. 2001. Vol. 81(21). P. 1284-1286.
49. Kovacs M., Papp M., Lakatos P.L. et al. Low mannose-bin-ding lectin (MBL) is associated with paediatric inflammatory bowel diseases and ileal involvement in patients with Crohn disease. J. Crohns Colitis. 2013. Vol. 7(2). P. 134-141.
50. Lecointe D., Fabre M., Habes D. et al. Macrophage activation syndrome in primary human herpes virus-6 infection: a rare condition after liver transplantation in infants. Gastroenterol. Clin. Biol. 2000. Vol. 24(12). P. 1227-1228.
51. Ledda C., Cannizzaro E., Lovreglio P. et al. Exposure to Toxic Heavy Metals Can Influence Homocysteine Metabolism? Antioxidants (Basel). 2019. Vol. 9(1). P. 30.
52. Li C., Yichao J., Jiaxin L. et al. Methylenetetrahydrofolate reductase gene polymorphism and risk of chronic myelogenous leukemia: a meta-analysis. J. BUON. 2015. Vol. 20(6). Р. 1534-1545.
53. Li M., Tang Y., Zhao E.Y. et al. Relationship between MTHFR gene polymorphism and susceptibility to bronchial asthma and glucocorticoid efficacy in children. Zhongguo Dang Dai Er Ke Za Zhi. 2021. Vol. 23(8). P. 802-808.
54. Li Y., Qiu S., Shi J. et al. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatr. 2020. Vol. 20(1). P. 449.
55. Li Ye., Viscidi R.P., Kannan G. et al. Chronic Toxoplasma gondii Infection Induces Anti-N-Methyl-d-Aspartate Receptor Auto-antibodies and Associated Behavioral Changes and Neuropatho-logy. Infect. Immun. 2018. Vol. 86(10). e00398-18. doi: 10.1128/IAI.00398-18.
56. Lv M.N., Zhang H., Shu Y. et al. The neonatal levels of TSB, NSE and CK-BB in autism spectrum disorder from Southern China. Transl. Neurosci. 2016. Vol. 7(1). P. 6-11.
57. Madsen H.O., Videm V., Svejgaard A. et al. Association of mannose-binding-lectin deficiency with severe atherosclerosis. Lancet. 1998. Vol. 352. P. 959-960.
58. Maltsev D., Natrus L. The effectiveness of infliximab in autism spectrum disorders associated with folate cycle genetic deficiency. Psychiatry, Psychotherapy and Clinical Psychologythis. 2020. Vol 11(3). P. 583-594.
59. Maltsev D.V., Stefanyshyn V.M. Efficacy of combined immunotherapy with propes and inflamafertin in selective deficiency of nk and nkt cells in children with autism spectrum disorders associated with genetic deficiency of the folate cycle. Current Pediatric Research. 2021. Vol. 25(4). P. 536-540.
60. Mao N., Chen J., Wang J. et al. Correlations of Methylen-etetrahydrofolate Reductase Gene Polymorphism and Genomic DNA Hypomethylation Level with Ankylosing Spondylitis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2020. Vol. 42(3). P. 307-312.
61. Marseglia L.M., Nicotera A., Salpietro V. et al. Hyperhomocysteinemia and MTHFR polymorphisms as antenatal risk factors of white matter abnormalities in two cohorts of late preterm and full term newborns. Oxid. Med. Cell. Longev. 2015. Vol. 2015. P. 543134. doi: 10.1155/2015/543134.
62. Masi A., Quintana D.S., Glozier N. et al. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol. Psychiatry. 2015. Vol.20(4). P. 440-446.
63. Mauracher A., Gujer E., Bachmann L.M. Patterns of Immune Dysregulation in Primary Immunodeficiencies: A Systematic Review. J. Allergy Clin. Immunol. Pract. 2021. Vol. 9(2). P. 792-802.
64. Mohammad N.S., Shruti P.S., Bharathi V. et al. Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatr. Genet. 2016. Vol. 26(6). P. 281-286.
65. Molina-López J., Leiva-García B., Planells E., Planells P. Food selectivity, nutritional inadequacies, and mealtime behavioral problems in children with autism spectrum disorder compared to neurotypical children. Int. J. Eat Disord. 2021. Oct 27. Online ahead of print.
66. Moll S., Varga E.A. Homocysteine and MTHFR Mutations. Circulation. 2015. Vol. 132(1). e6-9.
67. Monge-Galindo L., Pérez-Delgado R., López-Pisón J. et al. Mesial temporal sclerosis in paediatrics: its clinical spectrum. Our experience gained over a 19-year period. Rev. Neurol. 2010. Vol. 50(6). P. 341-348.
68. Mostafa G.A., El-Sherif D.F., Al-Ayadhi L.Y. et al. Systemic auto-antibodies in children with autism. J. Neuroimmunol. 2014. Vol. 272(1-2). P. 94-8.
69. Naghibalhossaini F., Ehyakonandeh H., Nikseresht A., Kamali E. Association Between MTHFR Genetic Variants and Multiple Sclerosis in a Southern Iranian Population. Int. J. Mol. Cell. Med. 2015. Vol. 4(2). P. 87-93.
70. Nayeri T., Sarvi S., Moosazadeh M. et al. Relationship between toxoplasmosis and autism: A systematic review and meta-ana-lysis. Microb. Pathog. 2020. Vol. 147. P. 104434.
71. Nicolson G.L., Gan R., Nicolson N.L., Haier J. Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders. J. Neurosci Res. 2007. Vol. 85(5). P. 1143-1148.
72. Nisihara R.M., Utiyama S.R., Oliveira N.P., Messias-Reason I.J. Mannan-binding lectin deficiency increases the risk of recurrent infections in children with Down’s syndrome. Hum. Immunol. 2010. Vol. 71(1). P. 63-66.
73. Ohlenschlaeger T., Garred P., Madsen H.O., Jacobsen S. Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. New Eng. J. Med. 2004. Vol. 351. P. 260-267. 
74. Pavone V., Praticò A.D., Parano E. et al. Spine and brain malformations in a patient obligate carrier of MTHFR with autism and mental retardation. Clin. Neurol. Neurosurg. 2012. Vol. 114(9). P. 1280-1282. 
75. Peerbooms O.L., van Os J., Drukker M. et al. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain. Behav. Immun. 2011. Vol. 25(8). P. 1530-1543.
76. Peng Q., Lao X., Huang X. et al. The MTHFR C677T polymorphism contributes to increased risk of Alzheimer’s disease: evidence based on 40 case-control studies. Neurosci. Lett. 2015. Vol. 586. P. 36-42.
77. Perlmutter S.J., Leitman S.F., Garvey M.A. et al. Therapeutic plasma exchange and intravenous immunoglobulin for obsessive-compulsive disorder and tic disorders in childhood. Lancet. 1999. Vol. 354(9185). P. 1153-1158.
78. Pinillos-Pisón R., Llorente-Cereza M.T., López-Pisón J. Congenital infection by cytomegalovirus. A review of our 18 years’ experience of diagnoses. Rev. Neurol. 2009. Vol. 48(7). P. 349-353.
79. Promthet S., Pientong C., Ekalaksananan T. et al. Risk factors for rectal cancer and methylenetetrahydrofolate reductase polymorphisms in a population in Northeast Thailand. Asian. Pac. J. Cancer Prev. 2012. Vol. 13(8). P. 4017-4023.
80. Pu D., Shen Y., Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res. 2013. Vol. 6(5). P. 384-392.
81. Qi X., Sun X., Xu J. et al. Associations between methylenetetrahydrofolate reductase polymorphisms and hepatocellular carcinoma risk in Chinese population. Tumour. Biol. 2014. Vol. 35(3). P. 1757-1762.
82. Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab. Brain Dis. 2016. Vol. 31(4). P. 727-735.
83. Rai V., Yadav U., Kumar P. et al. Maternal methylenetetrahydrofolate reductase C677T polymorphism and down syndrome risk: a meta-analysis from 34 studies. PLoS One. 2014. Vol. 9(9). e108552.
84. Rossignol D.A., Frye R.E. The Effectiveness of Cobalamin (B12) Treatment for Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. J. Pers. Med. 2021. Vol. 11(8). P. 784.
85. Rossignol D.A., Frye R.E. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry. 2012. Vol. 17. P. 389-401.
86. Rossignol D.A., Frye RE. A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. J. Pers. Med. 2021. Vol. 11(6). P. 488.
87. Russo A.J., Krigsman A., Jepson B., Wakefield A. Low serum myeloperoxidase in autistic children with gastrointestinal disease. Clinical and Experimental Gastroenterology. 2009. Vol. 2. P. 85-94.
88. Sadeghiyeh T., Dastgheib S.A., Mirzaee-Khoramabadi K. et al. Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian J. Psychiatr. 2019. Vol. 46. P. 54-61.
89. Saevarsdottir S., Vikingsdottir T., Vikingsson A. et al. Low mannose binding lectin predicts poor prognosis in patients with early rheumatoid arthritis. A prospective study. J. Rheumatol. 2001. Vol. 28(4). P. 728-734.
90. Saghazadeh A., Ataeinia B., Keynejad K. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. J. Psychiatr. Res. 2019. Vol. 115. P. 90-102.
91. Sakamoto A., Moriuchi H., Matsuzaki J. et al. Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit. Brain. Dev. 2015. Vol. 37(2). P. 200-205.
92. Singh A., Pandey S., Pandey L.K., Saxena A.K. In human alleles specific variation of MTHFR C677T and A1298C associated "risk factor" for the development of ovarian cancer. J. Exp. Ther. Oncol. 2015. Vol. 11(1). P. 67-70.
93. Singh V.K., Warren R.P., Odell J.D. et al. Antibodies to myelin basic protein in children with autistic behavior. Brain. Behav. Immun. 1993. Vol. 7(1). P. 97-103.
94. Snider L.A., Lougee L., Slattery M. et al. Antibiotic prophylaxis with azithromycin or penicillin for childhood-onset neuropsychiatric disorders. Biol. Psychiatry. 2005. Vol. 57(7). P. 788-792.
95. Swierzko A.S., Szala A., Sawicki S. et al. Mannose-Binding Lectin (MBL) and MBL-associated serine protease-2 (MASP-2) in women with malignant and benign ovarian tumours. Cancer Immunol. Immunother. 2014. Vol. 63(11). P. 1129-1140.
96. Theoharides T.C., Tsilioni I., Patel A.B., Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl. Psychiatry. 2016. Vol. 6(6). e844.
97. Valayi S., Eftekharian M.M., Taheri M., Alikhani M.Y. Evaluation of antibodies to cytomegalovirus and Epstein-Barr virus in patients with autism spectrum disorder. Hum. Antibodies. 2017. Vol. 26(3). P. 165-169. 
98. Venâncio P., Brito M.J., Pereira G., Vieira J.P. Anti-N-me-thyl-D-aspartate receptor encephalitis with positive serum antithyroid antibodies, IgM antibodies against mycoplasma pneumoniae and human herpesvirus 7 PCR in the CSF. Pediatr. Infect. Dis. J. 2014. Vol. 33 (8). P. 882-883. 
99. Wan L., Li Y., Zhang Z., Sun Z. et al. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl. Psychiatry. 2018. Vol. 8(1). P. 242.
100. Wang T., Zhang H.P., Zhang X. et al. Is Folate Status a Risk Factor for Asthma or Other Allergic Diseases? Allergy Asthma Immunol. Res. 2015. Vol. 7(6). P. 538-546.
101. Wang Y., Yang H., Duan G. et al. MTHFR gene A1298C polymorphisms are associated with breast cancer risk among Chinese population: evidence based on an updated cumulative meta-analysis. Int. J. Clin. Exp. Med. 2015. Vol. 8(11). Р. 20146-20156.
102. Wang Z., Ding R., Wang J. et al. The Association between Vitamin D Status and Autism Spectrum Disorder (ASD): A Systematic Review and Meta-Analysis. Nutrients. 2020. Vol. 13(1). E86.
103. Warren R.P., Margaretten N.C., Foster A. Reduced natural killer cell activity in autism. J. Am. Acad. Child. Adolesc. Psychiatry. 1987. Vol. 26. P. 333-335.
104. Warren R.P., Yonk L.J., Burger R.A. et al. Deficiency of suppressor inducer T cells in autism. Immunol. Invest. 1990. Vol. 19. P. 245-251.
105. Wipfler P., Dunn N., Beiki O. et al. The Viral Hypothesis of Mesial Temporal Lobe Epilepsy — Is Human Herpes Virus-6 the Missing Link? A systematic review and meta-analysis. Seizure. 2018. Vol. 54. P. 33-40. 
106. Yang Y., Luo Y., Yuan J. et al. Association between maternal, fetal and paternal MTHFR gene C677T and A1298C polymorphisms and risk of recurrent pregnancy loss: a comprehensive evaluation. Arch. Gynecol. Obstet. 2016. Vol. 293(6). P. 1197-1211.
107. Yektaş Ç., Alpay M., Tufan A.E. et al. Comparison of serum B12, folate and homocysteine concentrations in children with autism spectrum disorder or attention deficit hyperactivity disorder and healthy controls. Neuropsychiatr. Dis. Treat. 2019. Vol. 15. P. 2213-2219.
108. Yigit S., Inanir A., Tural S. et al. The effect of IL-4 and MTHFR gene variants in ankylosing spondylitis. Z. Rheumatol. 2015. Vol. 74(1). P. 60-66.
109. Zheng Z., Zheng P., Zou X. et al. Peripheral Blood S100B Levels in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. J. Autism. Dev. Disord. 2020. Vol. 51(8). P. 2569-2577.

Back to issue