Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Международный неврологический журнал Том 21, №6, 2025

Вернуться к номеру

Інсулінорезистентність, депресія і цукровий діабет 2-го типу

Авторы: Сергієнко О.О. (1), Чемерис О.М. (1), Паньків В.І. (2), Сергієнко В.О. (1)
(1) - Державне некомерційне підприємство «Львівський національний медичний університет імені Данила Галицького», м. Львів, Україна
(2) - Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, м. Київ, Україна

Рубрики: Неврология

Разделы: Справочник специалиста

Версия для печати


Резюме

Цукровий діабет (ЦД) 2-го типу та депресія є значними проблемами глобальної охорони здоров’я. Зокрема, приблизно 26–30 % хворих на ЦД страждають від депресії різного ступеня тяжкості, а ЦД 2-го типу подвоює ризик розвитку депресії. Розвиток депресії може бути зумовлений поведінковими чинниками, серед яких виділяють незбалансовані харчові звички, ожиріння, недостатню фізичну активність, соціальну нестабільність, зловживання психоактивними речовинами, порушення режиму сну. Інсулінорезистентність (ІР) — це одна з провідних ознак ЦД 2-го типу, що має різні форми, специфічні для певних тканин. Зокрема, периферична ІР проявляється зниженням поглинання глюкози скелетними м’язами та жировою тканиною через дефекти функціонування рецепторів інсуліну і порушення сигнальних шляхів. ІР клітин головного мозку пов’язана зі зміною сигналізації інсуліну в нейронах і гліальних клітинах, асоціюється з нейродегенеративними процесами, що пов’язує її як зі зниженням когнітивних здібностей, так і з розладами настрою. Існує кілька гіпотез щодо спільних факторів ризику, таких як психологічний вплив управління хронічним захворюванням, потенційно спільна генетична схильність або патофізіологічні порушення. Останні включають дисфункцію регуляції гіпоталамо-гіпофізарно-адреналової осі, активацію процесів хронічного запалення низької інтенсивності (ХЗНІ), зміни стану вегетативної нервової системи, дисфункцію симпатоадреналової системи; порушення регуляції інсулінової сигналізації та нейротрансмісії; активацію процесів оксидативного стресу і мітохондріальну дисфункцію; порушення гомеостазу кишкової мікробіоти і дисфункцію осі кишечник — мозок; дисфункціональність нейротрофічного фактора головного мозку; зміну синаптичної пластичності нейронів; порушення процесів автофагії. Водночас повідомляється, що взаємозв’язок між ЦД 2-го типу та підвищеним ризиком розвитку депресивних симптомів частково пояснюється підвищеним рівнем біомаркерів мікросудинної дисфункції, нейродегенерації, кінцевих продуктів глікування та артеріальної жорсткості. Проте значний вплив процесів ХЗНІ не був виявлений. Мета огляду: провести аналіз сучасного стану проблеми особливостей взаємозв’язків між ІР, депресією та ЦД 2-го типу, а також проаналізувати нові тенденції та напрямки майбутніх досліджень. Пошук проводився в Scopus, Science Direct (від Elsevier) і PubMed, включно з базами даних Medline. Використано ключові слова «інсулінорезистентність», «депресія», «цукровий діабет 2-го типу», «нейротрофічний фактор головного мозку». Для виявлення результатів досліджень, які не вдалося знайти під час онлайн-пошуку, використовувався ручний пошук бібліографії публікацій.

Type 2 diabetes mellitus (T2DM) and depression are significant global health problems. In particular, approximately 26–30 % of people with diabetes suffer from depression of varying severity, and T2DM doubles the risk of developing depression. The latter can be caused by behavioral factors, including unbalanced eating habits, obesity, physical inactivity, social instability, substance abuse, and sleep disturbances. Insulin resistance (IR), one of the leading signs of T2DM, has different forms specific to certain tissues. In particular, peripheral IR is manifested by reduced glucose uptake by skeletal muscles and adipose tissue due to defects in insulin receptor function and signaling pathways. IR of brain cells is associated with changes in insulin signaling in neurons and glial cells, with neurodegenerative processes, which links it to both cognitive decline and mood disorders. There are several hypotheses regarding common risk factors, such as the psychological impact of managing a chronic disease, potentially shared genetic predisposition, or pathophysiological disorders. The latter include dysregulation of the hypothalamic-pituitary-adrenal axis, activation of chronic low-grade inflammation, changes in the autonomic nervous system, dysfunction of the sympathoadrenal system, dysregulation of insulin signaling and neurotransmission, activation of oxidative stress processes and mitochondrial dysfunction, disturbance of intestinal microbiota homeostasis and dysfunction of the gut-brain axis, dysfunction of brain-derived neurotrophic factor, changes in synaptic plasticity of neurons, and disruption of autophagy. At the same time, it is reported that the relationship between T2DM and an increased risk of developing depressive symptoms is partly explained by increased levels of biomarkers of microvascular dysfunction, neurodegeneration, advanced glycation end products, and arterial stiffness. However, a significant impact of chronic low-grade inflammation processes has not been identified. The review aimed to examine the current state of research on the relationship between IR, depression, and T2DM, and to identify new trends and directions for future research. The search was conducted in Scopus, ScienceDirect (from Elsevier), and PubMed, including MEDLINE databases. The keywords used were “insulin resistance”, “depression”, “type 2 diabetes”, and “brain-derived neurotrophic factor”. A manual search for the bibliography of publications was used to identify research results that could not be found during the online search.


Ключевые слова

інсулінорезистентність; депресія; цукровий діабет 2-го типу; нейротрофічний фактор головного мозку; огляд літератури

insulin resistance; depression; type 2 diabetes mellitus; brain-derived neurotrophic factor; literature review


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119.
2. Beverly EA, Gonzalez JS. The interconnected complexity of diabetes and depression. Diabetes Spectr. 2025 Feb 14;38(1):23-31. doi: 10.2337/dsi24-0014.
3. Xu H, Chen Q. The bidirectional influence between type 2 diabetes mellitus and the state of depression and anxiety. J Affect Disord. 2025 Oct 1;386:119467. doi: 10.1016/j.jad.2025.119467.
4. Parveen R, Kapur P, Kohli S, Agarwal NB. Attenuated brain derived neurotrophic factor and depression in type 2 diabetes mellitus patients: A case-control study. Clin Epidemiol Glob Health. 2022;15:101016. doi: 10.1016/j.cegh.2022.101016.
5. da Silva Rosa SC, Nayak N, Caymo AM, Gordon JW. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol Rep. 2020 Oct;8(19):e14607. doi: 10.14814/phy2.14607.
6. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018 Mar;14(3):168-181. doi: 10.1038/nrneurol.2017.185.
7. van Gils V, Rizzo M, Ct J, Viechtbauer W, Fanelli G, Salas-Salvad J, et al. The association of glucose metabolism measures and diabetes status with Alzheimer’s disease biomarkers of amyloid and tau: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2024 Apr;159:105604. doi: 10.1016/j.neubiorev.2024.105604.
8. Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and the autonomic nervous system. Endokrynologia. 2023 Dec;28(4):377-392. doi: 10.31793/1680-1466.2023.28-4.377.
9. Wimberley T, Horsdal HT, Brikell I, Laursen TM, Astrup A, Fanelli G, et al. Temporally ordered associations between type 2 diabetes and brain disorders — A Danish register-based cohort study. BMC Psychiatry. 2022 Aug 26;22(1):573. doi: 10.1186/s12888-022-04163-z.
10. Possidente C, Fanelli G, Serretti A, Fabbri C. Clinical insights into the cross-link between mood disorders and type 2 diabetes: A review of longitudinal studies and Mendelian randomisation analyses. Neurosci Biobehav Rev. 2023 Sep;152:105298. doi: 10.1016/j.neubiorev.2023.105298.
11. Meshkat S, Liu Y, Jung H, Tassone VK, Pang H, Janssen-Aguilar R, et al. Temporal associations of BMI and glucose para-meters with depressive symptoms among US adults. Psychiatry Res. 2024 Feb;332:115709. doi: 10.1016/j.psychres.2023.115709.
12. Nong Y, Wu G, Lu J, Wei X, Yu D. The mediating role of obesity in the development of depression in individuals with diabetes: A population-based study from NHANES 2005-2014. J Affect Disord. 2024 Apr 15;351:977-982. doi: 10.1016/j.jad.2024.02.036.
13. Fanelli G, Raschi E, Hafez G, Matura S, Schiweck C, Poluzzi E, et al. The interface of depression and diabetes: treatment considerations. Transl Psychiatry. 2025 Jan 24;15(1):22. doi: 10.1038/s41398-025-03234-5.
14. Messina R, Iommi M, Rucci P, Reno C, Fantini MP, Lunghi C, et al. Is it time to consider depression as a major complication of type 2 diabetes? Evidence from a large population-based cohort study. Acta Diabetol. 2022 Jan;59(1):95-104. doi: 10.1007/s00592-021-01791-x.
15. Fanelli G, Serretti A. Depression, antidepressants, and insulin resistance: which link? Eur Neuropsychopharmacol. 2022 Jul;60:4-6. doi: 10.1016/j.euroneuro.2022.04.011.
16. Mangoulia P, Milionis C, Vlachou E, Ilias I. The interrelationship between diabetes mellitus and emotional well-being: current concepts and future prospects. Healthcare (Basel). 2024 Jul 22;12(14):1457. doi: 10.3390/healthcare12141457.
17. Gonzalez Heredia T, Gonzlez-Ramrez LP, Hernndez-Corona DM, Maciel-Hernndez EA. Anxious depression in patients with type 2 diabetes mellitus and its relationship with medication adherence and glycemic control. Glob Public Health. 2021 Mar;16(3):460-468. doi: 10.1080/17441692.2020.1810735.
18. Prigge R, Wild SH, Jackson CA. Depression, diabetes, comorbid depression and diabetes and risk of all-cause and cause-specific mortality: A prospective cohort study. Diabetologia. 2022 Sep;65(9):1450-1460. doi: 10.1007/s00125-022-05723-4.
19. Pankiv VI, Yuzvenko TYu, Vasiuk VL, Nykytiuk LA, Yuzvenko VS, Mikulets LV. Association between diabetes distress and sociodemographic factors among adults in Ukraine. Minarodnij endokrinologinij urnal. 2024;20(5):394-399. doi: 10.22141/2224-0721.20.5.2024.1426.
20. Sendekie AK, Limenh LW, Bizuneh GK, Kasahun AE, Wondm SA, Tamene FB, et al. Psychological distress and its impact on glycemic control in patients with diabetes, Northwest Ethiopia. Front Med (Lausanne). 2025 Mar 26;12:1488023. doi: 10.3389/fmed.2025.1488023.
21. Habib S, Sangaraju SL, Yepez D, Grandes XA, Talanki Manjunatha R. The nexus between diabetes and depression: A narrative review. Cureus. 2022 Jun 2;14(6):e25611. doi: 10.7759/cureus.25611.
22. Serhiyenko A, Baitsar M, Sehin V, Serhiyenko L, Kuznets V, Serhiyenko V. Post-traumatic stress disorder, insomnia, heart rate variability and metabolic syndrome (narrative review). Proc Shevchenko Sci Soc Med Sci. 2024 Jun;73(1):1-10. doi: 10.25040/ntsh2024.01.07.
23. Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, et al. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther. 2024 Apr;30(4):e14497. doi: 10.1111/cns.14497.
24. Carreira-Mguez M, Navarro-Jimnez E, Clemente-Surez VJ. Behavioral patterns of depression patients and control population. Int J Environ Res Public Health. 2022 Aug 2;19(15):9506. doi: 10.3390/ijerph19159506.
25. Sandri E, Sguanci M, Cantn Larumbe E, Cerd Olmedo G, Werner LU, et al. Plant-based diets versus the Mediterranean dietary pattern and their socio-demographic determinants in the Spanish po–pulation: influence on health and lifestyle habits. Nutrients. 2024 Apr 25;16(9):1278. doi: 10.3390/nu16091278.
26. Serhiyenko V, Serhiyenko A. Diabetic Cardiac Autonomic Neuropathy. In: Rodriguez-Saldana J, editor. The Diabetes Textbook: Clinical Principles, Patient Management and Public Health Issues. 2nd ed. Cham, Switzeland: Springer Nature; 2023. 939-966 pp. doi: 10.1007/978-3-03125519-9_57.
27. Oracz AJ, Zwierz M, Naumowicz M, Suprunowicz M, Waszkiewicz N. Relationship between obesity and depression considering the inflammatory theory. Int J Mol Sci. 2025 May 22;26(11):4966. doi: 10.3390/ijms26114966.
28. Aguilar M, Alberti KGMM, Amiel SA, Azzopachi J, Berne C, Bilous RW, et al. Leitfaden zu typ-2-diabetes mellitus/Guide for type 2 diabetes mellitus (Review). Diabetes und Stoffwechsel. 2000 Mar 20;9(2):104-136. 
29. Darwish L, Beroncal E, Sison MV, Swardfager W. Depression in people with type 2 diabetes: current perspectives. Diabetes Metab Syndr Obes. 2018 Jul 10;11:333-343. doi: 10.2147/DMSO.S106797.
30. Garca-Prez-de-Sevilla G, Snchez-Pinto B. Physical inactivity and chronic disease. Nutr Today. 2022;57:252. doi: 10.1097/NT.0000000000000556.
31. Iaccarino G, Franco D, Sorriento D, Strisciuglio T, Barbato E, Morisco C. Modulation of insulin sensitivity by exercise training: implications for cardiovascular prevention. J Cardiovasc Transl Res. 2021 Apr;14(2):256-270. doi: 10.1007/s12265-020-10057-w.
32. Hunt GE, Malhi GS, Lai HMX, Cleary M. Prevalence of comorbid substance use in major depressive disorder in community and clinical settings, 1990-2019: Systematic review and meta-analysis. J Affect Disord. 2020 Apr 1;266:288-304. doi: 10.1016/j.jad.2020.01.141.
33. Hsieh PH, Huang JY, Nfor ON, Lung CC, Ho CC, Liaw YP. Association of type 2 diabetes with liver cirrhosis: a nationwide cohort study. Oncotarget. 2017 Jun 13;8(46):81321-81328. doi: 10.18632/oncotarget.18466.
34. O’Keefe EL, DiNicolantonio JJ, O’Keefe JH, Lavie CJ. Alcohol and CV health: Jekyll and Hyde J-Curves. Prog Cardiovasc Dis. 2018 May-Jun;61(1):68-75. doi: 10.1016/j.pcad.2018.02.001.
35. Khudhur ZO, Smail SW, Awla HK, Ahmed GB, Khdhir YO, Amin K, et al. The effects of heavy smoking on oxidative stress, inflammatory biomarkers, vascular dysfunction, and hematological indices. Sci Rep. 2025 May 25;15(1):18251. doi: 10.1038/s41598-025-03075-8.
36. Platona RI, Ci GA, Voi-Mekeres F, Peia AO, Entescu RV. The impact of psychiatric comorbidities associated with depression: A literature review. Med Pharm Rep. 2024 Apr;97(2):143-148. doi: 10.15386/mpr-2700.
37. Chattu VK, Chattu SK, Burman D, Spence DW, Pandi-Perumal SR. The interlinked rising epidemic of insufficient sleep and diabetes mellitus. Healthcare (Basel). 2019 Mar 5;7(1):37. doi: 10.3390/healthcare7010037.
38. Saner NJ, Bishop DJ, Bartlett JD. Is exercise a viable therapeutic intervention to mitigate mitochondrial dysfunction and insulin resistance induced by sleep loss? Sleep Med Rev. 2018 Feb;37:60-68. doi: 10.1016/j.smrv.2017.01.001.
39. Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and chronic low-grade inflammation: A narrative review. Problemi Endocrinnoi Patologii. 2024 Mar 14;81(1):77-83. doi: 10.21856/j-PEP.2024.1.10.
40. Brailean A, Curtis J, Davis K, Dregan A, Hotopf M. Cha-racteristics, comorbidities, and correlates of atypical depression: evidence from the UK Biobank Mental Health Survey. Psychol Med. 2020 May;50(7):1129-1138. doi: 10.1017/S0033291719001004.
41. Hur MH, Lee MK, Seong K, Hong JH. Deterioration of sleep quality according to glycemic status. Diabetes Metab J. 2020 Oct;44(5):679-686. doi: 10.4093/dmj.2019.0125.
42. Fanelli G, Mota NR, Salas-Salvad J, Bull M, Fernandez-Aranda F, Camacho-Barcia L, et al. The link between cognition and somatic conditions related to insulin resistance in the UK Biobank study cohort: A systematic review. Neurosci Biobehav Rev. 2022 Dec;143:104927. doi: 10.1016/j.neubiorev.2022.104927.
43. Kamran M, Bibi F, Ur Rehman A, Morris DW. Major depressive disorder: existing hypotheses about pathophysiological mechanisms and new genetic findings. Genes (Basel). 2022 Apr 6;13(4):646. doi: 10.3390/genes13040646.
44. Wimberley T, Brikell I, Astrup A, Larsen JT, Petersen LV, Albiana C, et al. Shared familial risk for type 2 diabetes mellitus and psychiatric disorders: A nationwide multigenerational gene–tics study. Psychol Med. 2024 Aug;54(11):2976-2985. doi: 10.1017/S0033291724001053.
45. Liu Q, Wang Z, Cao J, Dong Y, Chen Y. The role of insulin signaling in hippocampal-related diseases: A focus on Alzheimer’s disease. Int J Mol Sci. 2022 Nov 20;23(22):14417. doi: 10.3390/ijms232214417.
46. Nourbakhsh K, Yadav S. Kinase signaling in dendritic development and disease. Front Cell Neurosci. 2021 Feb 10;15:624648. doi: 10.3389/fncel.2021.624648.
47. Serhiyenko VA, Serhiyenko AA, Segin VB, Serhiyenko LM. Association of arterial stiffness, N-terminal pro-brain natriuretic peptide, insulin resistance, and left ventricular diastolic dysfunction with diabetic cardiac autonomic neuropathy. Vessel Plus. 2022;6:11. doi: 10.20517/2574 1209.2021.83.
48. Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. Brain insulin signaling and cognition: possible links. EXCLI J. 2023 Feb 13;22:237-249. doi: 10.17179/excli2023-5841.
49. Kleinridders A, Pothos EN. Impact of brain insulin signaling on dopamine function, food intake, reward, and emotional behavior. Curr Nutr Rep. 2019 Jun;8(2):83-91. doi: 10.1007/s13668-019-0276-z.
50. Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Jabir MS, et al. NF-B/NLRP3 inflammasome axis and risk of Parkinson’s disease in type 2 diabetes mellitus: A narrative review and new perspective. J Cell Mol Med. 2023 Jul;27(13):1775-1789. doi: 10.1111/jcmm.17784.
51. Alagiakrishnan K, Halverson T. Role of peripheral and central insulin resistance in neuropsychiatric disorders. J Clin Med. 2024 Nov 3;13(21):6607. doi: 10.3390/jcm13216607.
52. Khawagi WY, Al-Kuraishy HM, Hussein NR, Al-Gareeb AI, Atef E, Elhussieny O, et al. Depression and type 2 diabetes: A causal relationship and mechanistic pathway. Diabetes Obes Metab. 2024 Aug;26(8):3031-3044. doi: 10.1111/dom.15630.
53. Gruber J, Hanssen R, Qubad M, Bouzouina A, Schack V, Sochor H, et al. Impact of insulin and insulin resistance on brain dopamine signalling and reward processing — An underexplored mechanism in the pathophysiology of depression? Neurosci Biobehav Rev. 2023 Jun;149:105179. doi: 10.1016/j.neubiorev.2023.105179.
54. Zou XH, Sun LH, Yang W, Li BJ, Cui RJ. Potential role of insulin on the pathogenesis of depression. Cell Prolif. 2020 May;53(5):e12806. doi: 10.1111/cpr.12806.
55. Song M, Bai Y, Song F. High-fat diet and neuroinflammation: The role of mitochondria. Pharmacol Res. 2025 Feb;212:107615. doi: 10.1016/j.phrs.2025.107615.
56. Woo YS, Lim HK, Wang SM, Bahk WM. Clinical evidence of antidepressant effects of insulin and anti-hyperglycemic agents and implications for the pathophysiology of depression — A literature review. Int J Mol Sci. 2020 Sep 22;21(18):6969. doi: 10.3390/ijms21186969.
57. Serhiyenko VA, Serhiyenko AA. Ezetimibe and diabetes mellitus: a new strategy for lowering cholesterol. Mnarodnij endokrinolognij urnal. 2022;18(5):63-75. Ukrainian. doi: 10.22141/2224-0721.18.5.2022.1190.
58. Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Hakami ZH, Khamjan NA, Saad HM, et al. A potential link between visceral obesity and risk of Alzheimer’s disease. Neurochem Res. 2023 Mar;48(3):745-766. doi: 10.1007/s11064-022-03817-4.
59. Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer’s disease: A systematic review and qualitative meta-analysis. Neurobiol Dis. 2024 Jun 15;196:106485. doi: 10.1016/j.nbd.2024.106485.
60. Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Features of Circadian Rhythms of Heart Rate Variability, Arterial Stiffness and Outpatient Monitoring of Blood Pressure in Diabetes Mellitus: Data, Mechanisms and Consequences. In: Sinha RP, editor. Circadian Rhythms and Their Importance. New York, NY: Nova Science Publishers; 2022. 279-341 pp. doi: 10.52305/GXME8274.
61. Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z. Neurodegenerative diseases and neuroinflammation-induced apoptosis. Open Life Sci. 2025 Feb 25;20(1):20221051. doi: 10.1515/biol-2022-1051.
62. Hamer JA, Testani D, Mansur RB, Lee Y, Subramaniapillai M, McIntyre RS. Brain insulin resistance: A treatment target for cognitive impairment and anhedonia in depression. Exp Neurol. 2019 May;315:1-8. doi: 10.1016/j.expneurol.2019.01.016.
63. Leonard BE, Wegener G. Inflammation, insulin resistance and neuroprogression in depression. Acta Neuropsychiatr. 2020 Feb;32(1):1-9. doi: 10.1017/neu.2019.17.
64. Szablewski L. Associations between diabetes mellitus and neurodegenerative diseases. Int J Mol Sci. 2025 Jan 10;26(2):542. doi: 10.3390/ijms26020542.
65. Stouffer MA, Woods CA, Patel JC, Lee CR, Witkovsky P, Bao L, et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun. 2015 Oct 27;6:8543. doi: 10.1038/ncomms9543.
66. He Y, Sun M, Qu M, Lu Y, Yang H, Wang R, et al. Brain insulin signaling pathway regulation of hippocampal neuroplasticity in neurocognitive disorders: mechanisms and therapeutic implications. J Integr Neurosci. 2025 Aug 25;24(8):39446. doi: 10.31083/JIN39446.
67. Bala R, Handley D, Gillett A, Green H, Bowden J, Wood A, et al. Evidence of bidirectional relationship between type 2 diabetes and depression; A Mendelian randomization study. Mol Psychiatry. 2025 Jul 1. doi: 10.1038/s41380-025-03083-0.
68. Serhiyenko VA, Serhiyenko LM, Sehin VB, Serhiyenko AA. Pathophysiological and clinical aspects of the circadian rhythm of arterial stiffness in diabetes mellitus: A minireview. Endocr Regul. 2022 Oct 20;56(4):284-294. doi: 10.2478/enr-2022-0031.
69. Khan MZ, Zugaza JL, Torres Aleman I. The signa–ling landscape of insulin-like growth factor 1. J Biol Chem. 2025 Jan;301(1):108047. doi: 10.1016/j.jbc.2024.108047.
70. Dakic T, Jevdjovic T, Lakic I, Ruzicic A, Jasnic N, Djurasevic S, et al. The expression of insulin in the central nervous system: what have we learned so far? Int J Mol Sci. 2023 Apr 1;24(7):6586. doi: 10.3390/ijms24076586.
71. Zegarra-Valdivia J, Arana-Nombera H, Perez-Fernandez L, Del Roco Casimiro M, Gallegos-Manayay V, Del Rosario Oliva-Piscoya M, et al. Insulin-like growth factor 1 impact on Alzheimer’s disease: role in inflammation, stress, and cognition. Curr Issues Mol Biol. 2025 Mar 27;47(4):233. doi: 10.3390/cimb47040233.
72. Maguire DG, Ruddock MW, Milanak ME, Moore T, Cobice D, Armour C. Sleep, a governor of morbidity in PTSD: A systematic review of biological markers in PTSD-related sleep disturbances. Nat Sci Sleep. 2020 Jul 31;12:545-62. doi: 10.2147/NSS.S260734.
73. Mehdi S, Wani SUD, Krishna KL, Kinattingal N, Roohi TF. A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation. Biochem Biophys Rep. 2023 Nov 1;36:101571. doi: 10.1016/j.bbrep.2023.101571.
74. Penninx BWJH, Lamers F, Jansen R, Berk M, Khanda–ker GM, De Picker L, et al. Immuno-metabolic depression: from concept to implementation. Lancet Reg Health Eur. 2024 Dec 18;48:101166. doi: 10.1016/j.lanepe.2024.101166.
75. Correia AS, Cardoso A, Vale N. Oxidative stress in depression: the link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants (Basel). 2023 Feb 13;12(2):470. doi: 10.3390/antiox12020470.
76. Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023 Oct;97(10):2499-2574. doi: 10.1007/s00204-023-03562-9.
77. Serhiyenkо VA, Chemerys OM, Pankiv VI, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, diabetic distress, and vitamin B1/benfotiamine. International Neurological Journal (Ukraine). 2025;21(1):96-107. Ukrainian. doi: 10.22141/2224-0713.21.1.2025.1157.
78. Caturano A, D’Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, et al. Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Curr Issues Mol Biol. 2023 Aug 12;45(8):6651-6666. doi: 10.3390/cimb45080420.
79. Dash UC, Bhol NK, Swain SK, Samal RR, Nayak PK, Raina V, et al. Oxidative stress and inflammation in the pathogenesis of neurological disorders: mechanisms and implications. Acta Pharm Sin B. 2025 Jan;15(1):15-34. doi: 10.1016/j.apsb.2024.10.004.
80. Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today. 2020 Jul;25(7):1270-1276. doi: 10.1016/j.drudis.2020.05.001.
81. Serhiyenko VA, Serhiyenko LM, Sehin VB, Serhiyenko AA. Effect of alpha-lipoic acid on arterial stiffness parameters in type 2 diabetes mellitus patients with cardiac autonomic neuropathy. Endocr Regul. 2021 Dec 7;55(4):224-233. doi: 10.2478/enr-2021-0024.
82. Byrne JF, Healy C, Mongan D, Susai SR, Zammit S, –Fcking M, et al. Transdiagnostic inflammatory subgroups among psychiatric disorders and their relevance to role functioning: a nested case-control study of the ALSPAC cohort. Transl Psychiatry. 2022 Sep 9;12(1):377. doi: 10.1038/s41398-022-02142-2.
83. Borgiani G, Possidente C, Fabbri C, Oliva V, Bloemendaal M, Arias Vasquez A, et al. The bidirectional interaction between antidepressants and the gut microbiota: Are there implications for treatment response? Int Clin Psychopharmacol. 2025 Jan 1;40(1):3-26. doi: 10.1097/YIC.0000000000000533.
84. Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne). 2020 Jan 31;11:25. doi: 10.3389/fendo.2020.00025.
85. Fanelli G, Franke B, De Witte W, Ruisch IH, Haavik J, van Gils V, et al. Insulinopathies of the brain? Genetic overlap between somatic insulin-related and neuropsychiatric disorders. Transl Psychiatry. 2022 Feb 14;12(1):59. doi: 10.1038/s41398-022-01817-0.
86. Li Y, Li F, Qin D, Chen H, Wang J, Wang J, et al. The role of brain derived neurotrophic factor in central nervous system. Front –Aging Neurosci. 2022 Sep 8;14:986443. doi: 10.3389/fnagi.2022.986443.
87. Alqahtani SM, Al-Kuraishy HM, Al Gareeb AI, Albuha–dily AK, Alexiou A, Papadakis M, et al. Unlocking Alzheimer’s disease: the role of BDNF signaling in neuropathology and treatment. Neuromolecular Med. 2025 May 17;27(1):36. doi: 10.1007/s12017-025-08857-x.
88. Serhiyenko VA, Serhiyenko AA. Diabetes mellitus and congestive heart failure. Mnarodnij endokrinolognij urnal. 2022;18(1):57-69. Ukrainian. doi: 10.22141/2224-0721.18.1.2022.1146.
89. Fukuchi M, Saito R, Maki S, Hagiwara N, Nakajima E, Mitazaki S, et al. Visualization of activity-regulated BDNF expression in the living mouse brain using non-invasive near-infrared bioluminescence imaging. Mol Brain. 2020;13:122. doi: 10.1186/s13041-020-00665-7.
90. He WL, Chang FX, Wang T, Sun BX, Chen RR, Zhao LP. Serum brain-derived neurotrophic factor levels in type 2 diabetes mellitus patients and its association with cognitive impairment: A meta-analysis. PLoS One. 2024 Apr 22;19(4):e0297785. doi: 10.1371/journal.pone.0297785.
91. Rozanska O, Uruska A, Zozulinska-Ziolkiewicz D. Brain-derived neurotrophic factor and diabetes. Int J Mol Sci. 2020 Jan 28;21(3):841. doi: 10.3390/ijms21030841.
92. Huded CB, Yedve S, Bagewadi HG, Satyanarayan N, Melkundi RS, Gogi PV, et al. Estimation of the serum levels of brain-derived neurotrophic factor (BDNF) and Interleukin-1 and their correlation with clinical severity in depression patients: A case-control study. Cureus. 2025 Aug 2;17(8):e89261. doi: 10.7759/cureus.89261.
93. Numakawa T, Kajihara R. An Interaction between brain-derived neurotrophic factor and stress-related glucocorticoids in the pathophysiology of Alzheimer’s disease. Int J Mol Sci. 2024 Jan 27;25(3):1596. doi: 10.3390/ijms25031596.
94. Garcia-Serrano AM, Duarte JMN. Brain metabolism alte–rations in type 2 diabetes: what did we learn from diet-induced diabetes models? Front Neurosci. 2020 Mar 20;14:229. doi: 10.3389/fnins.2020.00229.
95. Tanase DM, Valasciuc E, Gosav EM, Floria M, Buliga-Finis ON, Ouatu A, et al. Enhancing retinal resilience: The neuroprotective promise of BDNF in diabetic retinopathy. Life. 2025;15(2):263. doi: 10.3390/life15020263.
96. Harvey T, Rios M. The Role of BDNF and TrkB in the central control of energy and glucose balance: An update. Biomolecules. 2024 Mar 31;14(4):424. doi: 10.3390/biom14040424.
97. Davarpanah M, Shokri-Mashhadi N, Ziaei R, Saneei P. A systematic review and meta-analysis of association between brain-derived neurotrophic factor and type 2 diabetes and glycemic profile. Sci Rep. 2021 Jul 2;11(1):13773. doi: 10.1038/s41598-021-93271-z.
98. Lu Y, An T, Tian H, Gao X, Wang F, Wang S, et al. Depression with comorbid diabetes: what evidence exists for treatments using traditional Chinese medicine and natural products? Front Pharmacol. 2021 Jan 25;11:596362. doi: 10.3389/fphar.2020.596362.
99. Lei M, Liu Q, Nie J, Huang R, Mei Y, Pan D, et al. Impact and mechanisms of action of BDNF on neurological disorders, cancer, and cardiovascular diseases. CNS Neurosci Ther. 2024 Dec;30(12):e70138. doi: 10.1111/cns.70138.
100. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Sy–naptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016 Mar;22(3):238-49. doi: 10.1038/nm.4050.
101. Hees JT, Harbauer AB. Metabolic regulation of mitochondrial protein biogenesis from a neuronal perspective. Biomolecules. 2022 Oct 29;12(11):1595. doi: 10.3390/biom12111595.
102. Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Saad HM, Batiha GE, Klionsky DJ. The beneficial role of autophagy in multiple sclerosis: Yes or No? Autophagy. 2024 Feb;20(2):259-274. doi: 10.1080/15548627.2023.2259281.
103. Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, et al. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med. 2023 Oct 25;29(1):142. doi: 10.1186/s10020-023-00742-2.
104. Obradovic M, Zafirovic S, Gluvic Z, Radovanovic J, Isenovic ER. Autophagy and diabetes. Explor Med. 2023;4:576-588. doi: 10.37349/emed.2023.00162.
105. Tang M, Liu T, Jiang P, Dang R. The interaction between autophagy and neuroinflammation in major depressive disorder: From pathophysiology to therapeutic implications. Pharmacol Res. 2021 Jun;168:105586. doi: 10.1016/j.phrs.2021.105586.
106. Alrouji M, Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Elekhnawy E, Batiha GE. DPP-4 inhibitors and type 2 diabetes mellitus in Parkinson’s disease: A mutual relationship. Pharmacol Rep. 2023 Aug;75(4):923-936. doi: 10.1007/s43440-023-00500-5.
107. Gora IM, Ciechanowska A, Ladyzynski P. NLRP3 inflammasome at the interface of inflammation, endothelial dysfunction, and type 2 diabetes. Cells. 2021 Feb 3;10(2):314. doi: 10.3390/cells10020314.
108. Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther. 2024 Feb 9;9(1):30. doi: 10.1038/s41392-024-01738-y.
109. Steens ILM, Schram MT, Houben AJHM, Berendschot TTJM, Koster A, Bosma H, et al. Type 2 diabetes and depression via microvascular dysfunction, neurodegeneration, inflammation, advanced glycation end products (AGEs), arterial stiffness. Diabetes Obes Metab. 2025 Sep;27(9):4847-4858. doi: 10.1111/dom.16527.

Вернуться к номеру