Журнал «Медицина неотложных состояний» Том 21, №7, 2025
Вернуться к номеру
Фармакологічна регуляція мітохондріального гомеостазу при гострому панкреатиті: від автофагії до нанотерапії
Авторы: Чуклін С.М., Чуклін С.С.
Медичний центр Святої Параскеви, м. Львів, Україна
Рубрики: Медицина неотложных состояний
Разделы: Справочник специалиста
Версия для печати
Актуальність. Гострий панкреатит (ГП) є тяжкою абдомінальною патологією з високою частотою ускладнень і летальності. Одним із ключових патогенетичних механізмів цього захворювання визнано мітохондріальну дисфункцію, яка сприяє розвитку апоптозу, некрозу та системної запальної відповіді. Розробка терапевтичних підходів, спрямованих на збереження мітохондріального гомеостазу, набуває особливого значення. Матеріали та методи. Проведено систематизований аналіз експериментальних досліджень з баз PubMed, Scopus та Google Scholar, які вивчали вплив фармакологічних та біологічних агентів на мітохондріальну функцію при ГП in vivo та in vitro. Основна увага приділялась модуляції мітодинаміки, мітофагії, біогенезу, інгібуванню NLRP3-інфламасоми, а також застосуванню стовбурових клітин і нанотерапії. Результати. Результати аналізу експериментальних досліджень підтверджують, що відновлення мітохондріального гомеостазу може бути досягнуто шляхом модуляції кількох ключових процесів. Препарати з антиоксидантною активністю (мелатонін, ресвератрол, агомелатин) демонструють здатність знижувати продукування активних форм кисню, пригнічувати апоптоз ацинарних клітин і поліпшувати мембранний потенціал мітохондрій (m). Активація захисної автофагії та мітофагії шляхом застосування рапаміцину, трегалози, уролітину А, спермідину та селену сприяє елімінації дисфункціональних мітохондрій і зменшує запалення. Засоби, що стимулюють AMPK/SIRT1/PGC-1-опосередкований біогенез (метформін, AICAR, берберин, пінокембрин, німболід), відновлюють енергетичний баланс, активують антиоксидантні шляхи (Nrf2/HO-1), пригнічують каспази та інфламасому NLRP3. Інгібітори NLRP3 (MCC950, INF-39, полідатин, пеонол) значно зменшують вивільнення прозапальних цитокінів, активацію каспази-1 і піроптоз. Крім того, мезенхімальні стовбурові клітини та їхні екзосоми забезпечують передачу функціональних мітохондрій, інгібують піроптоз та знижують ураження віддалених органів. Нанотерапевтичні платформи (на основі кемпферолу, пентоксифіліну, поліфенолів, нанозимів, наночастинок ітрію, церію, іридію) забезпечують прицільну доставку в зону ушкодження, знижують оксидативний стрес, стимулюють мітофагію, зберігають m і підвищують синтез аденозинтрифосфату. Комплексне використання таких підходів дозволяє впливати на ключові ланки патогенезу ГП, зменшити тяжкість перебігу захворювання та поліпшити прогностичні показники в експериментальних моделях. Висновки. Фармакологічна модуляція мітохондріального гомеостазу відкриває нові можливості для патогенетично обґрунтованого лікування ГП. Мітохондріально-спрямована терапія є перспективним напрямом, що дозволяє зменшити пошкодження ацинарних клітин та обмежити тяжкість системних ускладнень.
Background. Acute pancreatitis is a severe abdominal condition with a high rate of complications and mortality. Mitochondrial dysfunction has been identified as a central mechanism contributing to acinar cell apoptosis, necrosis, and systemic inflammatory response. Therapeutic strategies targeting mitochondrial homeostasis are of growing importance. Materials and methods. A systematic review of experimental studies from PubMed, Scopus, and Google Scholar was performed. The focus was on the impact of pharmacological and biological agents on mitochondrial function in the in vivo and in vitro models of acute pancreatitis. Key topics included modulation of mitochondrial dynamics, mitophagy, mitochondrial biogenesis, NLRP3 inflammasome inhibition, and the use of stem cells and nanotherapy. Results. Analysis of experimental studies confirms that mitochondrial homeostasis in acute pancreatitis can be restored through the modulation of several key pathways. Antioxidant compounds such as melatonin, resveratrol, and agomelatine reduce reactive oxygen species, inhibit acinar cell apoptosis, and stabilize mitochondrial membrane potential (m). Pharmacological activation of protective autophagy and mitophagy with agents like rapamycin, trehalose, urolithin A, spermidine, and selenium promotes the clearance of dysfunctional mitochondria and attenuates inflammation. Agents that stimulate AMPK/SIRT1/PGC-1-mediated mitochondrial biogenesis (e.g., metformin, AICAR, berberine, pinocembrin, nimbolide) restore energy metabolism, activate antioxidant defense (Nrf2/HO-1), and suppress caspase and NLRP3 inflammasome activation. NLRP3 inhibitors (MCC950, INF-39, polydatin, paeonol) significantly reduce proinflammatory cytokine release, caspase-1 activation, and pyroptosis. Additionally, mesenchymal stem cells and their extracellular vesicles transfer functional mitochondria, inhibit pyroptosis, and protect distant organs. Nanotherapeutic platforms — based on kaempferol, pentoxifylline, polyphenols, nanozymes, yttrium, cerium, and iridium nanoparticles — enable targeted delivery to injured tissues, decrease oxidative damage, enhance mitophagy, maintain m, and boost adenosine triphosphate synthesis. These integrated approaches modulate fundamental pathogenic mechanisms of acute pancreatitis and improve outcomes in experimental settings. Conclusions. Pharmacological regulation of mitochondrial homeostasis offers a promising approach to targeted treatment of acute pancreatitis. Mitochondria-directed therapy may protect acinar cells and reduce the severity of systemic compli-cations.
гострий панкреатит; мітохондріальна дисфункція; мітохондріальна таргетна терапія; огляд
acute pancreatitis; mitochondrial dysfunction; mitochondria-targeted therapy; review
Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.
- Iannuzzi JP, King JA, Leong JH, Quan J, Windsor JW, Tanyin–goh D, et al. Global Incidence of Acute Pancreatitis Is Increa–sing Over Time: A Systematic Review and Meta-Analysis. Gastroente-rology. 2022 Jan;162(1):122-134. doi: 10.1053/j.gastro.2021.09.043. Epub 2021 Sep 25. PMID: 34571026.
- Trikudanathan G, Yazici C, Evans Phillips A, Forsmark CE. Diagnosis and Management of Acute Pancreatitis. Gastroenterology. 2024 Sep;167(4):673-688. doi: 10.1053/j.gastro.2024.02.052. Epub 2024 May 15. PMID: 38759844.
- Mahapatra SJ, Garg PK. Organ Failure and Prediction of Severity in Acute Pancreatitis. Gastroenterol Clin North Am. 2025 Mar;54(1):1-19. doi: 10.1016/j.gtc.2024.09.001. Epub 2024 Nov 9. PMID: 39880521.
- Cai Y, Yang F, Huang X. Oxidative stress and acute pancreatitis (Review). Biomed Rep. 2024 Jun 27;21(2):124. doi: 10.3892/br.2024.1812. eCollection 2024 Aug. PMID: 39006508.
- Li L, Tan Q, Wu X, Mou X, Lin Z, Liu T, et al. Coagulopathy and acute pancreatitis: pathophysiology and clinical treatment. Front Immunol. 2024 Oct 31;15:1477160. doi: 10.3389/fimmu.2024.1477160. eCollection 2024. PMID: 39544925.
- Liu Q, Zhu X, Guo S. From pancreas to lungs: The role of immune cells in severe acute pancreatitis and acute lung injury. Immun Inflamm Dis. 2024 Jul;12(7):e1351. doi: 10.1002/iid3.1351. PMID: 39023414.
- Mititelu A, Grama A, Colceriu MC, Pop TL. Overview of the cellular and immune mechanisms involved in acute pancreatitis: In search of new prognosis biomarkers. Expert Rev Mol Med. 2025 Jan 6;27:e9. doi: 10.1017/erm.2024.40. PMID: 39757373.
- Chen X, Zhong R, Hu B. Mitochondrial dysfunction in the pathogenesis of acute pancreatitis. Hepatobiliary Pancreat Dis Int. 2025 Feb;24(1):76-83. doi: 10.1016/j.hbpd.2023.12.008. Epub 2023 Dec 30. PMID: 38212158.
- Zhu L, Xu Y, Lei J. Molecular mechanism and potential role of mitophagy in acute pancreatitis. Mol Med. 2024 Sep 3;30(1):136. doi: 10.1186/s10020-024-00903-x. PMID: 39227768.
- Wang K, Zhang L, Deng B, Zhao K, Chen C, Wang W. Mitochondrial uncoupling protein 2: a central player in pancreatic disease pathophysiology. Mol Med. 2024 Dec 20;30(1):259. doi: 10.1186/s10020-024-01027-y. PMID: 39707176.
- Luo M, Jin T, Fang Y, Chen F, Zhu L, et al. Signaling Pathways Involved in Acute Pancreatitis. J Inflamm Res. 2025 Feb 17;18:2287-2303. doi: 10.2147/JIR.S485804. eCollection 2025.PMID: 40230438.
- Pei Z, Tian M. The cGAS-STING pathway as a no–vel therapeutic strategy for pancreatic diseases. Cytokine. 2024 Dec;184:156801. doi: 10.1016/j.cyto.2024.156801. Epub 2024 Nov 10. PMID: 39520833.
- Xia CC, Chen HT, Deng H, Huang YT, Xu GQ. Reactive oxygen species and oxidative stress in acute pancreatitis: Pathoge–nesis and new therapeutic interventions. World J Gastroenterol. 2024 Dec 7;30(45):4771-4780. doi: 10.3748/wjg.v30.i45.4771. PMID: 39649547.
- Papantoniou K, Aggeletopoulou I, Michailides C, Pastras P, Triantos C. Understanding the Role of NLRP3 Inflammasome in Acute Pancreatitis. Biology (Basel). 2024 Nov 18;13(11):945. doi: 10.3390/biology13110945. PMID: 39596901.
- Pandol SJ, Gottlieb RA. Calcium, mitochondria and the initiation of acute pancreatitis. Pancreatology. 2022 Nov;22(7):838-845. doi: 10.1016/j.pan.2022.07.011. Epub 2022 Aug 3. PMID: 35941013.
- Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, et al. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother. 2024 Jun;175:116690. doi: 10.1016/j.biopha.2024.116690. Epub 2024 May 7. PMID: 38718519.
- Mihoc T, Latcu SC, Secasan CC, Dema V, Cumpanas AA, Selaru M, et al. Pancreatic Morphology, Immunology, and the Pathogenesis of Acute Pancreatitis. Biomedicines. 2024 Nov 17;12(11):2627. doi: 10.3390/biomedicines12112627. PMID: 39595191.
- Zaman S, Gorelick F. Acute pancreatitis: pathogenesis and emerging therapies. J Pancreatol. 2024 Mar;7(1):10-20. doi: 10.1097/JP9.0000000000000168. Epub 2024 Jan 2. PMID: 38524855.
- Chen F, Xu K, Han Y, Ding J, Ren J, Wang Y, et al. Mitochondrial dysfunction in pancreatic acinar cells: mechanisms and therapeutic strategies in acute pancreatitis. Front Immunol. 2024 Dec 24;15:1503087. doi: 10.3389/fimmu.2024.1503087. eCollection 2024. PMID: 39776917.
- Jia W, Xu L, Xu W, Yang M, Zhang Y. Application of nanotechnology in the diagnosis and treatment of acute pancreatitis. Nanoscale Adv. 2022 Mar 19;4(8):1949-1961. doi: 10.1039/d2na00020b. eCollection 2022 Apr 12. PMID: 36133408.
- Zhao T, Fang R, Ding J, Liu Y, Cheng M, Zhou F, et al. Me–latonin ameliorates multiorgan injuries induced by severe acute pancreatitis in mice by regulating the Nrf2 signaling pathway. Eur J Pharmacol. 2024 Jul 15;975:176646. doi: 10.1016/j.ejphar.2024.176646. Epub 2024 May 17. PMID: 38762157.
- Uluk D, Keskin E, zaydn T, znurlu Y. Ameliorative effects of the melatonin on some cytokine levels, NF-B immunoreactivity, and apoptosis in rats with cerulein-induced acute pancreatitis. Iran J Basic Med Sci. 2024;27(3):279-285. doi: 10.22038/IJBMS.2023.69019.15045. PMID: 38333760.
- Alruhaimi RS, Hassanein EHM, Abd El-Aziz MK, Siddiq Abduh M, Bin-Ammar A, et al. The melatonin receptor agonist agome–latine protects against acute pancreatitis induced by cadmium by attenuating inflammation and oxidative stress and modulating Nrf2/HO-1 pathway. Int Immunopharmacol. 2023 Nov;124(Pt A):110833. doi: 10.1016/j.intimp.2023.110833. Epub 2023 Aug 25. PMID: 37634447.
- Ren ZN, Yang J, Zhang MY, Huang YW, Song DX, Sun X, et al. A novel resveratrol analog upregulates sirtuin 1 and inhibits inflammatory cell infiltration in acute pancreatitis. Acta Pharmacol Sin. 2022 May;43(5):1264-1273. doi: 10.1038/s41401-021-00744-y. Epub 2021 Aug 6. PMID: 34363008.
- Wu SK, Wang L, Wang F, Zhang J. Resveratrol improved mitochondrial biogenesis by activating SIRT1/PGC-1 signal pathway in SAP. Sci Rep. 2024 Oct 31;14(1):26216. doi: 10.1038/s41598-024-76825-9. PMID: 39482340.
- Liu M, Shi L, Zou X, Zheng X, Zhang F, Ding X, et al. Caspase inhibitor zVAD-fmk protects against acute pancreatitis-associated lung injury via inhibiting inflammation and apoptosis. Pancreatology. 2016 Sep-Oct;16(5):733-8. doi: 10.1016/j.pan.2016.06.002. Epub 2016 Jun 6. PMID: 27324074.
- Mareninova OA, Sung KF, Hong P, Lugea A, Pandol SJ, et al. Cell death in pancreatitis: caspases protect from necrotizing pancreatitis. J Biol Chem. 2006 Feb 10;281(6):3370-81. doi: 10.1074/jbc.M511276200. Epub 2005 Dec 8. PMID: 16339139.
- Tanoglu A, Yazgan Y, Kaplan M, Berber U, Kara M, et al. Trimetazidine significantly reduces cerulein-induced pancreatic apoptosis. Clin Res Hepatol Gastroenterol. 2015 Feb;39(1):145-50. doi: 10.1016/j.clinre.2014.06.003. Epub 2014 Jul 4. PMID: 25001186.
- Yenicerioglu A, Cetinkaya Z, Girgin M, Ustundag B, Ozercan IH, et al. Effects of trimetazidine in acute pancreatitis induced by L-arginine. Can J Surg. 2013 Jun;56(3):175-9. doi: 10.1503/cjs.032811. PMID: 23484468.
- Ergck H, Ik S, flazolu N, Kayaalp C, Sara M, Grsul S. The effect of trimethazidine on mortality in an experimental acute pancreatitis model1. Turk J Gastroenterol. 2020 Aug;31(8):549-557. doi: 10.5152/tjg.2020.18666. PMID: 32915142.
- Mei Q, Zeng Y, Huang C, Zheng J, Guo Y, Fan J, et al. Rapamycin Alleviates Hypertriglyceridemia-Related Acute Pancreatitis via Restoring Autophagy Flux and Inhibiting Endoplasmic Reticulum Stress. Inflammation. 2020 Aug;43(4):1510-1523. doi: 10.1007/s10753-020-01228-7. PMID: 3264291.
- Sharma MK, Priyam K, Kumar P, Garg PK, Roy TS, Jacob TG. Effect of calorie-restriction and rapamycin on autophagy and the severity of caerulein-induced experimental acute pancreatitis in mice. Front Gastroenterol. 2022;1:977169. doi: 10.3389/fgstr.2022.977169.
- Wan J, Chen J, Wu D, Yang X, Ouyang Y, Zhu Y, et al. Regulation of Autophagy Affects the Prognosis of Mice with Severe Acute Pancreatitis. Dig Dis Sci. 2018 Oct;63(10):2639-2650. doi: 10.1007/s10620-018-5053-0. Epub 2018 Apr 9. PMID: 29629491.
- Chen X, Hu K, Shi HZ, Zhang YJ, Chen L, et al. Syk/BLNK/NF-B signaling promotes pancreatic injury induced by tacrolimus and potential protective effect from rapamycin. Biomed Pharmacother. 2024 Feb;171:116125. doi: 10.1016/j.biopha.2024.116125. Epub 2024 Jan 5. PMID: 38183743.
- Lei Y, Yang HY, Meng N, Qin YY, Xu MT, Xiang XL, et al. Mitochondrial calcium uniporter promotes mitophagy by regulating the PINK1/Parkin pathway in caerulein-treated pancreatic ductal epithelial cells in vitro. Exp Ther Med. 2024 Feb 19;27(4):147. doi: 10.3892/etm.2024.12435. eCollection 2024 Apr. PMID: 38476889.
- Kang H, Hu Q, Yang Y, Huang G, Li J, Zhao X, et al. Urolithin A’s Role in Alleviating Severe Acute Pancreatitis via Endoplasmic Reticulum-Mitochondrial Calcium Channel Modulation. ACS Nano. 2024 May 28;18(21):13885-13898. doi: 10.1021/acsnano.4c03044. Epub 2024 May 17. PMID: 38757565.
- Li K, Xiao Y, Bian J, Han L, He C, El-Omar E, et al. Ameliorative Effects of Gut Microbial Metabolite Urolithin A on Pancreatic Diseases. Nutrients. 2022 Jun 20;14(12):2549. doi: 10.3390/nu14122549. PMID: 35745279.
- Yang Y, Hu Q, Kang H, Li J, Zhao X, Zhu L, et al. Urolithin A protects severe acute pancreatitis-associated acute cardiac injury by regulating mitochondrial fatty acid oxidative metabolism in cardiomyocytes. MedComm (2020). 2023 Dec 19;4(6):e459. doi: 10.1002/mco2.459. eCollection 2023 Dec. PMID: 38116065.
- Shen Y, Duan H, Yuan L, Asikaer A, Liu Y, Zhang R, et al. Computational biology-based study of the molecular mechanism of spermidine amelioration of acute pancreatitis. Mol Divers. 2024 Aug;28(4):2583-2601. doi: 10.1007/s11030-023-10698-4. Epub 2023 Jul 31. PMID: 37523101.
- Biczo G, Vegh ET, Shalbueva N, Mareninova OA, Elperin J, Lotshaw E, et al. Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology. 2018 Feb;154(3):689-703. doi: 10.1053/j.gastro.2017.10.012. Epub 2017 Oct 23. PMID: 29074451.
- Hamo-Giladi DB, Fokra A, Sabo E, Kabala A, Minkov I, Hamoud S, et al. Involvement of heparanase in the pathogenesis of acute pancreatitis: Implication of novel therapeutic approaches. J Cell Mol Med. 2024 Sep;28(17):e18512. doi: 10.1111/jcmm.18512. PMID: 39248454.
- Han P, Ma X, Ge Y, Ren H, Wu Y. Selenium corrects dysregulated mitophagy and lipophagy in obesity-related acute pancreatitis through the GPX1-Mfn2-PLIN2 axis. Biochem Biophys Res Commun. 2025 Jul 1;768:151916. doi: 10.1016/j.bbrc.2025.151916. Epub 2025 Apr 28. PMID: 40327907.
- Liao WC, Chen YH, Li HY, Wang TT, Lan P, Pan KH, et al. Diaphragmatic dysfunction in sepsis due to severe acute pancreatitis complicated by intra-abdominal hypertension. J Int Med Res. 2018 Apr;46(4):1349-1357. doi: 10.1177/0300060517747163. Epub 2018 Jan 29.PMID: 29376467.
- Wang K, Zhao A, Tayier D, Tan K, Song W, Cheng Q, et al. Activation of AMPK ameliorates acute severe pancreatitis by suppressing pancreatic acinar cell necroptosis in obese mice models. Cell Death Discov. 2023 Sep 30;9(1):363. doi: 10.1038/s41420-023-01655-z. PMID: 37777514.
- Wang XD, Yu WL, Sun Y. Activation of AMPK restored impaired autophagy and inhibited inflammation reaction by up-regulating SIRT1 in acute pancreatitis. Life Sci. 2021 Jul 15;277:119435. doi: 10.1016/j.lfs.2021.119435. Epub 2021 Mar 26. PMID: 33781829.
- Kong L, Zhang H, Lu C, Shi K, Huang H, Zheng Y, et al. AICAR, an AMP-Activated Protein Kinase Activator, Ameliorates Acute Pancreatitis-Associated Liver Injury Partially Through Nrf2-Mediated Antioxidant Effects and Inhibition of NLRP3 Inflammasome Activation. Front Pharmacol. 2021 Aug 31;12:724514. doi: 10.3389/fphar.2021.724514. eCollection 2021. PMID: 34531748.
- Bansod SP, Saifi MA, Chilvery S, Doijad N, Godugu C. Berberine Attenuates Cerulein-Induced Acute Pancreatitis by Modulating Nrf2/NOX2 Signaling Pathway via AMPK Activation. Environ Toxicol. 2025 May;40(5):764-773. doi: 10.1002/tox.24468. Epub 2024 Dec 26. PMID: 39723751.
- Sun P, Nie M. Effect and mechanism of Angelic Shaoyaosan mediated AMPK/SIRT1 positive feedback loop to promote autophagy and regulate the systemic inflammatory response in acute pancreatitis. Cell Mol Biol (Noisy-le-grand). 2021 Aug 31;67(2):101-108. doi: 10.14715/cmb/2021.67.2.15. PMID: 34817332.
- Wen B, Huang Y, Deng G, Yan Q, Jia L. Gut microbiota ana–lysis and LC-MS-based metabolomics to investigate AMPK/NF-B
- regulated by Clostridium butyricum in the treatment of acute pancreatitis. J Transl Med. 2024 Nov 27;22(1):1072. doi: 10.1186/s12967-024-05764-w. PMID: 39604956.
- Deng G, Wen B, Jia L, Liu J, Yan Q. Clostridium butyricum upregulates GPR109A/AMPK/PGC-1 and ameliorates acute pancreatitis-associated intestinal barrier injury in mice. Arch Microbiol. 2024 May 18;206(6):265. doi: 10.1007/s00203-024-04001-8. PMID: 38761195.
- Yang J, Zhou Y, Shi J. Cordycepin protects against acute pancreatitis by modulating NF-B and NLRP3 inflammasome activation via AMPK. Life Sci. 2020 Jun 15;251:117645. doi: 10.1016/j.lfs.2020.117645. Epub 2020 Apr 5. PMID: 32268154.
- Zhu L, He C. Crocetin alleviates the caerulein-induced apoptosis and inflammation in AR42J cells by activating SIRT1 via NF-B.
- J Nat Med. 2022 Mar;76(2):410-418. doi: 10.1007/s11418-021-01597-9. Epub 2022 Jan 30. PMID: 35094239.
- Zhang Z, Luo Y, Zhuang X, Gao H, Yang Q, Chen H. Emodin alleviates lung injury via the miR-217-5p/Sirt1 axis in rats with severe acute pancreatitis. J Pharmacol Sci. 2024 Nov;156(3):188-197. doi: 10.1016/j.jphs.2024.08.007. Epub 2024 Aug 30. PMID: 39313277.
- Ali BM, Al-Mokaddem AK, Selim HMRM, Alherz FA, Saleh A, Hamdan AME, et al. Pinocembrin’s protective effect against acute pancreatitis in a rat model: The correlation between TLR4/NF-B/NLRP3 and miR-34a-5p/SIRT1/Nrf2/HO-1 pathways. Biomed Pharmacother. 2024 Jul;176:116854. doi: 10.1016/j.biopha.2024.116854. Epub 2024 Jun 1. PMID: 38824834.
- Bansod S, Godugu C. Nimbolide ameliorates pancreatic inflammation and apoptosis by modulating NF-B/SIRT1 and apoptosis signaling in acute pancreatitis model. Int Immunopharmacol. 2021 Jan;90:107246. doi: 10.1016/j.intimp.2020.107246. Epub 2020 Dec 9. PMID: 33310297.
- Li D, Li C, Jiang S, Wang T, Zhang C, Zhu Z, et al. Loni–cerin protects pancreatic acinar cells from caerulein-induced apoptosis, inflammation, and ferroptosis by activating the SIRT1/GPX4 signaling pathway. Toxicol Appl Pharmacol. 2024 Nov;492:117136. doi: 10.1016/j.taap.2024.117136. Epub 2024 Oct 29. PMID: 39476876.
- Yuan J, Wei Z, Xin G, Liu X, Zhou Z, Zhang Y, et al. Vitamin B12 Attenuates Acute Pancreatitis by Suppressing Oxidative Stress and Improving Mitochondria Dysfunction via CBS/SIRT1 Pathway. Oxid Med Cell Longev. 2021 Dec 9;2021:7936316. doi: 10.1155/2021/7936316. eCollection 2021. PMID: 34925701.
- Sendler M, van den Brandt C, Glaubitz J, Wilden A, Golchert J, Weiss FU, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis. Gastroenterology. 2020 Jan;158(1):253-269.e14. doi: 10.1053/j.gastro.2019.09.034. PMID: 31614252.
- Zhang J, Huang W, He Q, Deng T, Wu B, Huang F, et al. PINK1/PARK2 dependent mitophagy effectively suppresses NLRP3 inflammasome to alleviate acute pancreatitis. Free Radic Biol Med. 2021 Apr;166:147-164. doi: 10.1016/j.freeradbiomed.2021.02.019. Epub 2021 Feb 23. PMID: 33636335.
- Shen Y, Yang H, Wu D, Yang H, Hong D. NLRP3 inflammasome inhibitor MCC950 can reduce the damage of pancreatic and intestinal barrier function in mice with acute pancreatitis. Acta Cir Bras. 2022 Oct 28;37(7):e370706. doi: 10.1590/acb370706. eCollection 2022.PMID: 36327405.
- Huang Q, Liu JW, Dong HB, Wei ZJ, Liu JZ, Ren YT, et al. Mesenteric adipose tissue B lymphocytes promote intestinal injury in severe acute pancreatitis by mediating enteric pyroptosis. Hepatobiliary Pancreat Dis Int. 2024 Jun;23(3):300-309. doi: 10.1016/j.hbpd.2023.11.006. Epub 2023 Nov 24. PMID: 38057185.
- Zhang P, Yin X, Wang X, Wang J, et al. Paeonol protects against acute pancreatitis by Nrf2 and NF-B pathways in mice. J Pharm Pharmacol. 2022 Nov 4;74(11):1618-1628. doi: 10.1093/jpp/rgac065. PMID: 36170125.
- Fu Q, Zhai Z, Wang Y, Xu L, Jia P, Xia P, et al. NLRP3 Deficiency Alleviates Severe Acute Pancreatitis and Pancreatitis-Associated Lung Injury in a Mouse Model. Biomed Res Int. 2018 Nov 28;2018:1294951. doi: 10.1155/2018/1294951. eCollection 2018. PMID: 30622955.
- Gao L, Chong E, Pendharkar S, Hong J, Windsor JA, Ke L, et al. The Effects of NLRP3 Inflammasome Inhibition in Experimental Acute Pancreatitis: A Systematic Review and Meta-Analysis. Pancreas. 2022 Jan 1;51(1):13-24. doi: 10.1097/MPA.0000000000001971. PMID: 35195590.
- Li CX, Cui LH, Zhang LQ, Yang L, Zhuo YZ, et al. Role of NLR family pyrin domain-containing 3 inflammasome in the activation of pancreatic stellate cells. Exp Cell Res. 2021 Jul 15;404(2):112634. doi: 10.1016/j.yexcr.2021.112634. Epub 2021 May 15. PMID: 34004193.
- Yang J, Jiao C, Liu N, Liu W, Wang Y, Pan Y, et al. Polydatin-Mediated Inhibition of HSP90 Disrupts NLRP3 Complexes and Alleviates Acute Pancreatitis. Research (Wash D C). 2024 Dec 17;7:0551. doi: 10.34133/research.0551. eCollection 2024. PMID: 39691768.
- York JM, Castellanos KJ, Cabay RJ, Fantuzzi G. Inhibition of the nucleotide-binding domain, leucine-rich containing family, pyrin-domain containing 3 inflammasome reduces the severity of experimentally induced acute pancreatitis in obese mice. Transl Res. 2014 Oct;164(4):259-69. doi: 10.1016/j.trsl.2014.06.012. Epub 2014 Aug 15. PMID: 25152324.
- Hu Z, Wang D, Gong J, Li Y, Ma Z, Luo T, et al. MSCs Deliver Hypoxia-Treated Mitochondria Reprogramming Acinar Metabolism to Alleviate Severe Acute Pancreatitis Injury. Adv Sci (Weinh). 2023 Sep;10(25):e2207691. doi: 10.1002/advs.202207691. Epub 2023 Jul 6. PMID: 37409821.
- Li S, Li H, Zhangdi H, Xu R, Zhang X, Liu J, et al. Hair follicle-MSC-derived small extracellular vesicles as a novel remedy for acute pancreatitis. J Control Release. 2022 Dec;352:1104-1115. doi: 10.1016/j.jconrel.2022.11.029. Epub 2022 Nov 19. PMID: 36402231.
- Ren S, Pan L, Yang L, Niu Z, Wang L, et al. miR-29a-3p transferred by mesenchymal stem cells-derived extracellular vesicles protects against myocardial injury after severe acute pancreatitis. Life Sci. 2021 May 1;272:119189. doi: 10.1016/j.lfs.2021.119189. Epub 2021 Feb 9. PMID: 33571516.
- Mahmoudi T, Jalili A, Abdolmohammadi K, Fakhari S, Pahlavan F, Shekari A, et al. Human Bone Marrow Mesenchymal Stromal Cells Attenuate Tissue Injury and Reduce Inflammation in Experimental Acute Pancreatitis. Adv Pharm Bull. 2022 Mar;12(2):375-382. doi: 10.34172/apb.2022.036. Epub 2021 Jan 31. PMID: 35620344.
- Liu H, Liu S, Song X, Jiang A, Zou Y, Deng Y, et al. Nanoparticle encapsulated CQ/TAM combination harmonizes with MSCs in arresting progression of severity in AP mice through iNOS (IDO) signaling. Mater Today Bio. 2022 Feb 26;14:100226. doi: 10.1016/j.mtbio.2022.100226. eCollection 2022 Mar. PMID: 35308042.
- Kawakubo K, Ohnishi S, Fujita H, Kuwatani M, Onishi R, Masamune A, et al. Effect of Fetal Membrane-Derived Mesenchymal Stem Cell Transplantation in Rats With Acute and Chronic Pancreatitis. Pancreas. 2016 May-Jun;45(5):707-13. doi: 10.1097/MPA.0000000000000541. PMID: 26646279.
- Zhao H, He Z, Huang D, Gao J, Gong Y, Wu H, et al. Infusion of Bone Marrow Mesenchymal Stem Cells Attenuates Experimental Severe Acute Pancreatitis in Rats. Stem Cells Int. 2016;2016:7174319. doi: 10.1155/2016/7174319. Epub 2016 Sep 18. PMID: 27721836.
- Wen E, Tian Y, Fang M, Zhang Y, Zhao H, Wang Z, et al. The P2X7-Mediated Mitochondrial ROS as an Emerging Core Target of Tuftsin Nanoparticles in Severe Acute Pancreatitis Therapy via Regulating Mitophagy. ACS Appl Mater Interfaces. 2025 Feb 5;17(5):7521-7538. doi: 10.1021/acsami.4c21010. Epub 2025 Jan 24. PMID: 39854589.
- Khurana A, Anchi P, Allawadhi P, Kumar V, Sayed N, et al. Yttrium oxide nanoparticles reduce the severity of acute pancreatitis caused by cerulein hyperstimulation. Nanomedicine. 2019 Jun;18:54-65. doi: 10.1016/j.nano.2019.02.018. Epub 2019 Mar 6. PMID: 30851439.
- Wu J, Huang H, Xu W, Cui B, Sun P, Hao X, et al. Inflammation-driven biomimetic nano-polyphenol drug delivery system alleviates severe acute pancreatitis by inhibiting macrophage PANoptosis and pancreatic enzymes oversecretion. J Adv Res. 2025 Apr 8:S2090-1232(25)00225-5. doi: 10.1016/j.jare.2025.04.006. Online ahead of print. PMID: 40210149.
- Wen E, Cao Y, He S, Zhang Y, You L, Wang T, et al. The mitochondria-targeted Kaempferol nanoparticle ameliorates severe acute pancreatitis. J Nanobiotechnology. 2024 Apr 3;22(1):148. doi: 10.1186/s12951-024-02439-y. PMID: 38570776.
- Jin W, Xie X, Shen S, Zhou X, Wang S, et al. Ultrasmall polyvinylpyrrolidone-modified iridium nanoparticles with antioxidant and anti-inflammatory activity for acute pancreatitis alleviation. J Biomed Mater Res A. 2024 Jul;112(7):988-1003. doi: 10.1002/jbm.a.37679. Epub 2024 Feb 6. PMID: 38318924.
- Wang L, Gao Z, Tian M, Liu L, Xie J, Chen M, et al. A Nanosystem Alleviates Severe Acute Pancreatitis via Reactive Oxygen Species Scavenging and Enhancing Mitochondrial Autophagy. Nano Lett. 2025 May 28;25(21):8644-8654. doi: 10.1021/acs.nanolett.5c01495. Epub 2025 May 14. PMID: 40369909.
- Khurana A, Anchi P, Allawadhi P, Kumar V, Sayed N, et al. Superoxide dismutase mimetic nanoceria restrains cerulein induced acute pancreatitis. Nanomedicine (Lond). 2019 Jul;14(14):1805-1825. doi: 10.2217/nnm-2018-0318. Epub 2019 Jul 3. PMID: 31267840.
- Zhang Q, Shen Y, Zhang C, Zhang H, Li X, Yang S, et al. Immunoengineered mitochondria for efficient therapy of acute organ injuries via modulation of inflammation and cell repair. Sci Adv. 2025 Mar 21;11(12):eadj1896. doi: 10.1126/sciadv.adj1896. Epub 2025 Mar 19. PMID: 40106554.
- Wang Y, Wang X, Zhang X, Zhang B, Meng X, Qian D, et al. Inflammation and Acinar Cell Dual-Targeting Nanomedicines for Synergistic Treatment of Acute Pancreatitis via Ca2+ Homeostasis Regulation and Pancreas Autodigestion Inhibition. ACS Nano. 2024 May 7;18(18):11778-11803. doi: 10.1021/acsnano.4c00218. Epub 2024 Apr 23. PMID: 38652869.
- Wang D, Wang S, Liu J, Shi X, Xiong T, Li R, et al. Nanomedicine Penetrating Blood-Pancreas Barrier for Effective Treatment of Acute Pancreatitis. Adv Sci (Weinh). 2025 Apr;12(13):e2413925. doi: 10.1002/advs.202413925. Epub 2025 Feb 14. PMID: 39950925.
- Lu X, Gao Z, Yu Y, Zhang L, Huang J, Zhang X, et al. Natural product-based nano-antioxidant for the treatment of acute pancreatitis. Regen Biomater. 2025 Apr 21;12:rbaf012. doi: 10.1093/rb/rbaf012. eCollection 2025. PMID: 40405869.
